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Summary

Under certain conditions, stochastic processes with an absorbing set allow the existence of

so-called quasi-stationary distributions. In the models where they can be found, those quasi-

stationary distributions can be useful to understand the long-term behaviour of the process. It

turns out that the distribution of such processes will also converge toward such quasi-stationary

distributions as t →∞. Therefore, it can also be useful to predict the time of absorption from

any point.

The topic has been extensively studied in some of its applications, in particular birth-and-

death processes, which require only a restricted framework. Yet, there is a small number of

ressources in the literature with a more theoretic and general approach of quasi-stationary dis-

tributions. Moreover, the treatment given in those publications is not always satisfying.

Therefore, we will first try to provide a rigorous description of quasi-stationary distributions

and their properties in general a setting. We will then study applied examples, in particular in

epidemics which contain a large variety of models. In the literature, the connection between the

general theory on quasi-stationary distributions and those models is generally not made. Thus,

we will discuss how general results can help us study those cases and eventually get insights in

the spread of epidemics.
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Chapter 1

Introduction

Many mathematical models describing natural phenomena are balanced in a way such that they

are unlikely to explode and will eventually collapse. But the reasonable long time behaviour

that they will exhibit beforehand is something that we would like to predict. Quasi-stationary

distributions are useful to provide information about this behaviour as well as to help predict

when the collapse would happen. The underlying theory helps us understand why in many cases

a situation which is not an equilibrium will eventually display a form of stability.

1.1 An intuitive description of quasi-stationary distributions

We provide here a basic explanation of quasi-stationary distributions and their use, with a

simple approach and without the theoretical framework which we use in the following chapter.

Historical elements presented in this section come from [19] and [28].

We consider a random Markov process {Yt} taking values in a discrete space. For instance, Yt

can be the number of people in a population, in which case Yt takes values in the set of positive

integers and is said to follow a birth-and-death process.

The particularity of the processes we are interested in is that some of their possible states are

traps, called absorbing states. When the process ends up falling into one of those states we say

that it has been killed. We are interested in the study of those processes before they get killed.

In our example, 0 is an absorbing state: when there is no one left in the population nothing can

happen anymore.

We generally have an origin of time t = 0, and we have some information regarding the

value Y0, in our example the number of people at time 0 in the population. This information

comes as a probability distribution ν. Thus, when the states are described by positive integers

as for birth-and-death processes, the distribution is determined by the sequence of probabilities

ν({0}),ν({1}), . . . such that Y0 is equal to n with probability ν({n}).
Then, this probability distribution evolves as time goes by. Take for example a birth-and-

death process starting from a fixed point, which is equivalent to say that Y0 follows a Dirac

distribution. Possible paths for this process are represented in figure 1.1. In the absence of any

additional information, what we know of the random variable Yt for t > 0 is that it follows a

probability distribution which depends on two things: the initial distribution ν of Y0 and the

1
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Figure 1.1: Several birth-and-death processes starting from the same point

transition probabilities characterizing the process.

We add one information to this: the fact that, at time t > 0, we did not reach an absorbing

state yet. Then, we can describe the behaviour of the process conditioned on it being still “alive”.

This yields a probability distribution on the set of non-absorbing states.

Suppose now that the process never starts in an absorbing state, so that the initial distribution

ν can be described as a distribution on the transient states only. From the previous paragraph,

at any moment t we have a distribution, call it νt , on the transient states which describes Yt

conditioned upon the fact that it is not in an absorbing state, i.e. Yt 6= 0 in our example.

A quasi-stationary distribution, which we will formally define in section 3.2, is an initial

distribution ν such that any subsequent conditional distribution νt , t > 0 is still equal to ν. This

means that, if the process is still alive at time t, then it is expected to take the same values with

the same probabilities than at time 0.

Depending on the model, there can be only one possible quasi-stationary distribution, a finite

number, an infinity or none at all. Therefore, a large part of the literature in the field is about

counting and identifying those distributions in particular settings.

Moreover, in practical applications, we don’t normally start following a quasi-stationary dis-

tribution. But what often happens is that the sequence (νt)t¾0 of conditional distributions con-

verges to a distribution ν∞ on the transient states, which happens to be a quasi-stationary

distribution. This notion is also formalized in section 3.2. Therefore, provided that the conver-

gence to ν∞ is fast enough compared to the expected lifetime of the process, the knowledge of

quasi-stationary distributions provides a good description of the long-term behaviour of a system

prior to killing.

This is summarized by Bartlett in [5], who later coined the term “quasi-stationary distribu-
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tion”:

"It still may happen that the time to extinction is so long that it is still of more

relevance to consider the effectively ultimate distribution [of the process]"

Earlier observations about quasi-stationarity, in the absence of theoretical formalism, were

made in the middle of the XXth century in the fields of genetics or biological systems. In addition

to the fields already mentioned, and epidemic models that we will develop here, quasi-stationary

distributions can be used in a wide range of applications. A list of other possible uses, established

in [28] includes cellular automata, immunology, medical decision making, physical chemistry,

queues, telecommunications, etc.

1.2 Epidemic models

We are interested here in the application of quasi-stationary distributions to compartemen-

tal models of epidemic propagation. The essential simplification made by such models is that

we can divide the population into separate compartments and individuals have homogeneous

characteristics inside each of those. For example, the category of infectious people is one such

compartment.

A classic reference regarding epidemic models is the book by Andersson and Britton [3]
which describes various kinds of models. In particular, it distinguishes the deterministic and

stochastic models. We give here a basic description of deterministic models in order to introduce

the main ideas but we will later focus exclusively on stochastic models in chapter 5.

Those models hold in the case of viral or bacterial infection with a person-to-person trans-

mission mechanism. This includes notably sexually transmitted diseases and childhood diseases

such as measles, chickenpox and rubella. It is less adapted to host-vector and parasitic infec-

tions. However, some non-medical applications of the model exist, for example the spread of

rumours.

One of the most basic model is SIS, which stands for the following mechanism:

Susceptible Þ Infectious Þ Susceptible.

This means that there are two compartments, infectious and susceptible, and that any person

who recovers can get sick again anytime.

We denote by N the total size of the population, by S the number of susceptible people and

by I the number of infectious ones, so that N = S + I . In a stochastic setting those values are

random variables. In the deterministic version they are continuous functions of time governed

by the following differential equations:

dS
dt
= −β

SI
N
+ γI and

dI
dt
= β

SI
N
− γI

where β ∈ R+ is called contact rate and γ ∈ R+ is the recovery rate. The equations come from the

representation of the N individuals living together in some restricted space. Thus, the term β SI
N

comes from the consideration that every susceptible person will meet every day other individuals,

some of which may be infected and will infect the susceptible one with a certain probability,
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which we can compound in a factor β I/N . When summing over all susceptible we then get that

β SI
N is proportionate to the number of susceptible people getting infected at every step.

It is generally assumed that there is no vital dynamics, meaning that N is constant. This

is justified by the fact that the spread of a disease is generally much faster than demographic

evolutions. However, in some situations this hypothesis does not hold, which requires more

complex models and is studied in chapter 6.

The second classic model is SIR, with a mechanism similar to the first:

Susceptible Þ Infectious Þ Recovered.

The difference is that recovery confers a long-term resistance to the disease, and thus creates a

third compartment whose size is denoted by R. The deterministic model is then

N = S + I + R,
dS
dt
= −β

SI
N

,
dI
dt
= β

SI
N
− γI and

dR
dt
= γI .

The stochastic models that we will review in chapter 5 are morally similar to the deterministic

one. They use the same rates, and in both cases they are very dependent on the value called

basic reproduction number or basic reproductive ratio which is defined as

R0 =
β

γ
.

Typically, this ratio can go from 1.5 for diseases like Ebola during the 2014 outbreak and in the

absence of control measures [1], to about 18 for measles which is airborne [10].

1.3 Organisation of the dissertation

Apart from the first description of quasi-stationary distributions in section 1.1, this disserta-

tion is written with a top-down approach and a gradual degree of specialization. In order to be

accessible to people who are not familiar with Markov processes, but who have a graduate-level

knowledge in continuous stochastic processes, chapter 2 provides an introduction to the key

notions that we use. It focuses on definitions and properties which are of use in the rest of the

dissertation. It also sets the notation.

In chapter 3 we use this theoretical background to build the general setting of quasi-stationary

distributions. Most of the content of this chapter comes from some key books and articles, but

we focus here on three goals:

• to make it more accessible than the original content by developing the proofs,

• to use a notation which enables a continuity of the theory and that can be used in its

applications,

• to smoothly specialize our content.

In chapter 4 we restrict slightly our approach. As practical applications are usually on count-

able spaces we study how the general setting used before translates in that case. We particularly

care to explain how every new step that we take is still relying on the theory preceding it, which

often lacks in the literature. For instance, we progressively add assumptions so that every result

given at some point can be used in the following parts.
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Then, in chapter 5 we describe several stochastic models of epidemic modelling using the

notations and the setting of the previous chapter. We review the main results obtained from

those models, using the theory developed in the previous chapter.

Chapter 6 is again dedicated to epidemic modelling, but focuses more specifically on models

in which the overall population is not constant.

Finally, we review some techniques in chapter 7 to model those processes and examine some

results obtained on quasi-stationary distributions from our simulations.



Chapter 2

Markov processes

This chapter provides theoretical background on Markov processes, mostly taken from [22] and

[15], with elements from [2] and [6]. It can be skipped by any reader already at ease with this

topic.

Although they are not at the core of this dissertation’s topic, the following definitions and

theorems serve as a basis for the theory of quasi-stationary distributions developed in chapter 3.

We only give an introduction to the topic, with the notions necessary to understand the rest of

the dissertation. Since those results are very well-known we state the theorems without copying

the proofs.

2.1 Notation

Before introducing the theory of Markov processes we need some notations which will be of

use in all the dissertation.

We denote by N the set of nonnegative integers, N∗ = N \ {0}, R the set of real numbers

and Q the set of rational numbers. Moreover, R̄ = R ∪ {−∞,+∞}, R+ = [0,+∞[ and R̄+ =
R̄+ ∪ {+∞}.

The characteristic function of a set A is written 1A. If A is a set with a topological structure,

B(A) denotes the collection of all Borel sets on A.

Let (X,X ) be a measurable space. We denote byM (X) the set of measures on (X,X ) and by

P (X) the set of probability measures.

For any measurable function f : X→ Rwe denote ‖ f ‖1 :=
∫

| f | and ‖ f ‖∞ := supx∈X | f (x)|.
We define L1(X) (resp. L∞(X)) as the set of real measurable functions whose norms for ‖·‖1
(resp. ‖·‖∞) are finite. When no set is specified, we assume that L1 and L∞ contain functions

on the state space X. Then, we define the scalar product 〈· | ·〉 by

∀ f ∈ L1,∀g ∈ L∞, 〈 f | g〉 :=

∫

f g .

If α ∈ P (X) and f ∈ L∞ then we denote α( f ) :=
∫

X f (x)α(dx).

Furthermore, we denote by (θs)s∈R+ the family of shift operators. That is, if Ω is the set of

sample paths with Ω ⊂ XR+ , then for any s ∈ R+, θs is defined by

∀ω= (ωt)t¾0 ∈ Ω, θs((ωt)t¾0) := (ωt+s)t¾0 . (2.1)

6
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2.2 Transition functions and Markov processes

Let (X,X ) be a measurable space.

Definition 2.1. A kernel N on X is a map from X×X into R̄+ such that

(i) for every x ∈ X, the map A 7→ N(x , A) is a positive measure on X ,

(ii) for every A∈ X , the map x 7→ N(x , A) is X -measurable.

If, in addition, ∀x ∈ X, N(x ,X) = 1 then N is called a transition probability.

Let f : X → R be a bounded (resp. nonnegative) and X -measurable function. We define

N f : X→ R by

N f (x) :=

∫

X
N(x , dy) f (y) (2.2)

and N f is also bounded (resp. nonnegative) and X -measurable. If M is another kernel, then

MN defined by

MN(x , A) :=

∫

X
M(x , dy)N(y, A)

is again a kernel.

Definition 2.2. A transition function on (X,X ) is a family (Ps,t)0≤s<t of transition probabilities

on (X,X ) such that they satisfy the Chapman-Kolmogorov equation:

∀(s, t, v) ∈ R3
+, s < t < v =⇒ ∀x ∈ X,∀A∈ X ,

∫

X
Ps,t(x , dy)Pt,v(y, A) = Ps,v(x , A) .

The transition function is said to be homogeneous if Ps,t depends only on t− s, in which case we

write Pt for P0,t .

If the transition function is homogeneous then the Chapman-Kolmogorov equation reads

∀s, t ¾ 0, Pt+s(x , A) =

∫

X
Ps(x , dy)Pt(y, A) . (2.3)

In other words, the family (Pt)t¾0 forms a semigroup with ∀t, s ¾ 0, Pt+s = Pt Ps.

In the case of quasi-stationary distributions and their applications in epidemic modelling,

the transition functions that we use are generally homogeneous, i.e. only the difference t − s

matters. It means here that the transition rates do not evolve over time. But if we were to study

for example seasonal changes in the propagation of an epidemy, then the use of a more general

transition function could be a better model.

Definition 2.3. Let (Ω,F , (Ft)t ,P) be a filtered probability space. An adapted process Y with

values in X is a Markov process with respect to (Ft), with transition function (Ps,t)0≤s<t if for

any X -measurable function f : X→ R+ and any pair (s, t) ∈ R2
+ with s < t,

E [ f (Yt) | Fs] = Ps,t f (Ys) P− a.s.

The law of Y0 is called the initial distribution of Y . The process is said to be homogeneous if the

transition function is homogeneous, in which case the above equality reads

E [ f (Yt) | Fs] = Pt−s f (Ys) .
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We sometimes extend this definition by allowing a transition function to be composed of

kernels (Pt)t such that Pt(x ,X) < 1 for some t ∈ R+, x ∈ X while the Chapman-Kolmogorov

equation still holds. In that case we say that it is a dishonest or submarkovian transition func-

tion. On the contrary, a transition function is sometimes said to be honest when ∀t ∈ R+,∀x ∈
X, Pt(x ,X) = 1.

We suppose now that (X,X ) is a Polish space, that is, a separable and completely metrizable

topological space. Moreover, it is endowed with the σ-field of Borel subsets. In the context of

the previous definition we set Ω = XR+ , F∞ = X ⊗R+ and Ft = σ(Yu, u ≤ t). The process Y

verifies ∀ω ∈ Ω,∀t ∈ R+, Yt(ω) =ωt and is called the coordinate process or canonical process.

The following theorem gives a crucial property of this kind of processes: they are always

Markovian under a certain probability.

Theorem 2.4. Given a transition function (Ps,t) on (X,X ), for any probability measure ν on

(X,X ), there is a unique probablity measure Pν on (Ω,F∞) such that Y is Markov with respect to

(Ft) with transition function (Ps,t) and initial measure ν.

In the remaining part we consider only homogeneous processes.

By the previous theorem, for any x ∈ X, denoting by δx the corresponding Dirac distribution,

there exists a probability measure Pδx
such that Y is Markov and Y0 = x Pδx

-a.s. We denote it

more simply by Px .

Similarly, if Z is anF∞-measurable and positive random variable we denote by Eν[Z] (resp.

Ex[Z]) its expectation under Pν (resp. Px). In the case when Z = 1{Yt∈A} for some A ∈ X we

then have

Px(Yt ∈ A) = Pt(x , A) .

The following proposition is a generalization of this result.

Proposition 2.5. If Z is F∞-measurable and positive or bounded, the map x 7→ Ex[Z] is X -

measurable and

Eν[Z] =
∫

X
ν(dx)Ex[Z] .

This proposition and the following are some of the most useful tools that we have to handle

Markov processes. It is necessary to be familiar with them in order to understand the proofs

given in the next chapters.

Proposition 2.6 (Markov property). If Z is F∞-measurable and positive (or bounded), for every

t > 0 and starting measure ν,

Eν[Z ◦ θt | Ft] = EYt
[Z] Pν − a.s.

Finally, we shall introduce the resolvent of the transition function. Although it is of major

importance in the theory of Markov processes, we will need it explicitely only in some proofs of

chapter 6, so the reader can skip it at first.
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Definition 2.7. Let λ > 0. We call λ-resolvent of the transition semigroup (Pt)t¾0 the linear

operator Rλ : L∞→ L∞ defined by

∀ f ∈ L∞,∀x ∈ X, Rλ f (x) :=

∫ ∞

0

e−λt Pt f (x)dt .

Proposition 2.8. Let λ > 0. Then, the λ-resolvent has the following properties:

(i) ‖λRλ‖∞ ≤ 1,

(ii) ∀λ,µ > 0, Rλ − Rµ + (λ−µ)RλRµ = 0 (resolvent equation).

2.3 Feller processes

Feller semigroups are an important category of transition functions that we always use in the

case of quasi-stationary distributions. We can see them as a family of positive linear operators

and use (2.2) to associate a transition function to it. We will use here the definitions from [15]
which are more directly useful for us.

We assume from now on that X is a metrizable locally compact topological space, countable

at infinity, i.e. X is a countable union of compact sets. We endow X with its Borel σ-field.

We denote by C0(X) the set of continuous functions on X that tend to 0 at infinity, meaning

that, for every ε > 0, there exists K ⊂ X compact such that ∀x ∈ X \ K , | f (x)| ¶ ε. This is a

Banach space for the supremum norm ‖·‖∞.

Definition 2.9. Let (Pt)t¾0 be a homogeneous transition semigroup on X. We say that (Pt) is a

Feller semigroup if

(i) ∀ f ∈ C0(X),∀t ¾ 0, Pt f ∈ C0(X),

(ii) ∀ f ∈ C0(X), limt→0 ‖Pt f − f ‖= 0.

A Markov process with values in X is a Feller process if its semigroup is Feller.

Moreover, condition (ii) can be replaced by ∀ f ∈ C0(X),∀x ∈ X, limt↓0 Pt f (x) = f (x).
In the following, we fix a Feller semigroup (Pt)t¾0 on X and denote by Y the canonical

version of a Feller process with semigroup (Pt)t¾0.

Theorem 2.10. The process Y admits a càdlàg modification (right-continuous with left limits).

This statement means that there exists a càdlàg process Ỹ on (Ω,F ) such that Ỹt = Yt Pν−a.s.

for any t and every initial distribution ν, and which is a Feller process with semigroup (Pt)t . This

is a major advantage of working with Feller semigroups: it is not actually restrictive to consider

only càdlàg sample paths.

Then, we shall introduce the generator of the transition function, sometimes also called

infinitesimal generator in the case of a discrete state space. It is a key tool to describe processes

and work on quasi-stationary distributions.

Definition 2.11. We set D(L) =
¦

f ∈ C0(X) |
Pt f − f

t converges in C0(X) when t ↓ 0
©

and, for

every f ∈ D(L),

L f = lim
t↓0

Pt f − f
t

.

Then D(L) is a linear subspace of C0(X) called the domain of L and L : D(L)→ C0(X) is a linear

operator called the generator of the semigroup (Pt).
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The following propositions explain then why the generator is particularly useful in describing

a Markov process.

Proposition 2.12. Let f ∈ D(L) and s > 0. Then, Qs f ∈ D(L) and L(Qs f ) =Qs(L f ).

Proposition 2.13. The semigroup (Pt)t¾0 is determined by the generator L and its domain.

Moreover, in the case of a Feller process the resolvent has additional properties that we will

exploit.

Proposition 2.14. Let λ > 0 and set R = {Rλ f | f ∈ C0(X)}. Then, R does not depend on the

choice of λ. Furthermore, R is a dense subset of C0(X).

Proposition 2.15. We have D(L) = R . Moreover, for any λ > 0, the operator Rλ : C0(X) → R
and λ− L : D(L)→ C0(X) are the inverse of each other, i.e.

∀g ∈ C0(X), (λ− L)Rλg = g, and ∀ f ∈ D(L), Rλ(λ− L) f = f .

Finally, we extend proposition 2.6 to stopping times. This proposition is used many times as

well in the context of this dissertation.

Proposition 2.16 (Strong Markov property). If Z is aF∞-measurable and positive (or bounded)

random variable and T is a stopping time, for any initial measure ν,

Eν[1{T<∞}Z ◦ θT | FT ] = 1{T<∞}EYT
[Z] Pν − a.s.



Chapter 3

General theory on quasi-stationary

distributions

We first give the setting of quasi-stationary distributions and their formal definitions, as well as

that of other key concepts such as quasi-limiting distributions and Yaglom limits.

3.1 Assumptions in a general setting

This first section develops the necessary theoretical setting and is mainly based on the book

by Collet, Martinez and San Martin [9].

We consider a Polish space X, called state space, endowed with its Borel σ-field B(X). In

further applications X is generally discrete, which satisfies this setting as any discrete space is a

Polish space (Cf [18]).
Let Ω ⊂ XR+ be the set of càdlàg trajectories on X, indexed by R+ which is the “time index”.

Let (Pt)t∈R+ be a Feller semigroup on X. Then, using theorem 2.10, we define Y to be the

càdlàg Feller process with semigroup (Pt)t . Thus, Y is a canonical process with ∀s ∈ R+, Ys(ω) =
ωs, which can be seen as a family of projections on X.

We denote by (Ft)t¾0 the right-continuous filtration such that Y is adapted to (Ft) and F0

contains the negligible of X. We setF :=F∞ which then contains the σ-fields generated by all

the X t , t ∈ R+.

Following theorem 2.4 and the subsequent remark, we denote by Px the distribution on

(Ω,F ) with the initial conditon Y0 = x ∈ X. More generally, we denote by Pν the distribution

on (Ω,F ) with Y0 ∼ ν.

Now that we have set the notation, we give the two main assumptions necessary to have

quasi-stationary distributions.

Definition 3.1. Let N be a Markov Kernel on (X,B(X)). A non-empty set B ∈ B(X) is called

absorbing if ∀x ∈ B, N(x , B) = 1.

Assumption 1. There is a non-empty set Xab ∈B(X) of values called absorbing states, such that

Xab 6= X and Xab is an absorbing set for any Pt , t ¾ 0.

11
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Remark. In general, when we say that x ∈ X is an absorbing state it does not mean that {0} is

an absorbing set but simply that x ∈ Xab, and there is no equivalence a priori between the two.

We denote the complement of Xab by Xtr. The subscript comes from the fact that we will

later restrict this setting to countable spaces so that Xtr will include only states which are called

transient. In some practical applications given here, Xtr will even be exactly the set of transient

states for the related Markov chain.

We allow ourselves to implicitely extend distributions on Xtr to use them on X. This is

the case in particular with quasi-stationary distributions, which are distributions on Xtr. Since

Xtr ∈B(X) this extension is straightforward: for any α ∈ P (Xtr) and A∈B(X) we set α(A) :=
α(A∩Xtr).

We denote by T the hitting time of Xab, also called killing time. The state of Xab which is

reached at T is also sometimes called exit state. We denote by Y T the stopped process (Yt∧T )t¾0.

Assumption 2. There is sure killing at Xab:

∀x ∈ Xtr, Px(T <∞) = 1 (3.1)

which is equivalent to ∀ρ ∈ P (Xtr),Pρ(T <∞) = 1 where we have Pρ =
∫

Xtr
Px dρ(x).

One implication of (3.1) is

∀ρ ∈ P (Xtr), ∃tρ ∈ R+, ∀t > tρ, Pρ(T < t)> 0 . (3.2)

In particular, there can be no stationary distribution for Y on Xtr, that is a distributionρ ∈ P (Xtr)
such that ∀B ∈ B(Xtr),∀t ¾ 0,Pρ(Yt ∈ B) = ρ(B). Indeed, we would have ∀t ¾ 0,Pρ(Yt ∈
Xtr) = ρ(Xtr) = 1, which contradicts (3.2).

3.2 Definitions

Using the setting of the previous section, we can now define quasi-stationarity and some

other crucial notions in this topic. In the 1990’s the definition of a quasi-stationary distribution

was still unclear and depended on the author. The definitions of quasi-limiting distributions and

Yaglom limits were also changing and sometimes assimilated.

The definition of a QSD given by Ferrari et al. [12] in 1995, in a more restrictive setting, was

the basis of the following works. The definitions and results given here will be based on [9],
[17] and [19], which are all relatively recent. Notably, it turns out that few people wrote about

quasi-stationary distributions in a setting as general as this one. Most of the papers in this field

focus on more applied results.

Definition 3.2. A probability measure ν on Xtr is said to be a quasi-stationary distribution (QSD)

for Y if

∀B ∈B(Xtr), ∀t ¾ 0, Pν(Yt ∈ B | T > t) = ν(B) .

Another name which is sometimes used instead of QSD is stationary conditional distribution.

The definition implies that if ν is a QSD we have

∀B ∈B(Xtr), ∀t ¾ 0, Pν(Yt ∈ B, T > t) = ν(B)Pν(T > t) .

Then, since B∩Xab = ;, {Yt ∈ B} is included in {T > t} and we can simplify the last equation as

∀B ∈B(Xtr), ∀t ¾ 0, Pν(Yt ∈ B) = ν(B)Pν(T > t) . (3.3)
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Definition 3.3. A probability measure ν on Xtr is a quasi-limiting distribution (QLD) for Y if

there exists a probability measure α on Xtr such that

∀B ∈B(Xtr), lim
t→∞
Pα(Yt ∈ B | T > t) = ν(B) .

Remark. Quasi-limiting distributions are also sometimes named limiting conditional distribu-

tions in the literature.

If ν is a QLD for some initial distribution α, we say that α is in the domain of attraction of

ν. A problem is then to identify those domains of attraction. The problem is more simple in the

presence of a Yaglom limit, which is stronger.

Definition 3.4. We say that Y has a Yaglom limit if there exists a probability measure ν on Xtr

such that

∀x ∈ Xtr, ∀B ∈B(Xtr), lim
t→∞
Px(Yt ∈ B | T > t) = ν(B) .

So, clearly, a Yaglom limit is a QLD since it is the QLD of any initial Dirac distribution δx

with x ∈ Xtr. From its definition, the Yaglom limit is necessarily unique when it exists, whereas

there is no limit in general to the number of quasi-limiting distributions, so that not every QLD

is a Yaglom limit.

We can actually prove a stronger relation between the three types of distributions that we

introduced here, given schematically by

Yaglom limit =⇒ QSD ⇐⇒ QLD.

This equivalence is presented in the following proposition, with a proof first given by Meleard

and Villimonais [17] in the general setting, and earlier in the case of countable spaces by Vere-

Jones [29].

Proposition 3.5. Let ν ∈ P (Xtr). Then, ν is a QLD for Y if and only if it is a QSD for Y .

First, we state a property of quasi-limiting distributions, with a proof adapted from [14].

Lemma 3.6. Let ν be a QLD for Y for some initial distribution α ∈ P (Xtr). Then, we have

∀ f ∈ L∞, ν( f ) = lim
t→∞
Eα[ f (Yt) | T > t] .

Proof. Let f ∈ L∞ and ε > 0. Then, there exist N ∈ N and y0, y1, . . . , yN ∈ R such that

y0 ¶ −‖ f ‖∞ < y1 < . . .< yN−1 < ‖ f ‖∞ < yN

and ∀i ∈ {1, . . . , N}, |yi − yi−1|< ε. For every i ∈ {1, . . . , N}, let Ei = f −1([yi−1, yi[).
We define in P (Xtr) the distributions νt : A 7→ Pα(Yt ∈ A | T > t) for all t ∈ R where

A ∈ B(Xtr). Thus, (νt) converges to ν in the sense that ∀A ∈ B(Xtr), limt→∞ νt(A) = ν(A).
Therefore,

limsup
t→∞

νt( f ) ¶ limsup
t→∞

N
∑

i=1

νt(Ei) · yi =
N
∑

i=1

ν(Ei) · yi ¶ ε + ν( f )
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When we let ε ↓ 0 we get lim supt→∞ νt( f ) ¶ ν( f ). If we consider − f we obtain similarly the

reverse inequality lim inft→∞ νt( f )¾ ν( f ). We conclude that

ν( f ) = lim
t→∞

νt( f ) = lim
t→∞

∫

Xtr

f (x)Pα(Yt ∈ dx | T > t) = lim
t→∞
Eα[ f (Yt) | T > t]

with a change of variable in the integral to find the expectation. �

Proof of proposition 3.5. The second implication is direct: if ν is a QSD then it is a QLD for itself.

Assume now that ν is a QLD for Y for an initial distribution α ∈ P (Xtr). We use lemma 3.6

with the function f : x 7→ Px(T > s) for some s ∈ R+. We get

Pν(T > s) = lim
t→∞
Eα[PYt

(T > s) | T > t] = lim
t→∞

Eα[1{T>t}PYt
(T > s)]

Pα(T > t)

Moreover, using the Markov property (proposition 2.6) and tower property,

Eα[1{T>t}PYt
(T > s)] = Eα[1{T>t}EYt

[1{T>s}]]

= Eα[1{T>t}Eα[1{T>s} ◦ θt | Ft]]

= Eα[Eα[1{T>t}1{T>s+t} | Ft]]

= Eα[1{T>s+t}]

= Pα(T > s+ t) .

Thus, we have Pν(T > s) = lim
t→∞

Pα(T > s+ t)
Pα(T > t)

.

Now, we take f : x 7→ Px(Ys ∈ A, T > s) with A⊂ Xtr. With the same logic as before we get

Pν(Ys ∈ A, T > s) = lim
t→∞

Pα(Yt+s ∈ A, T > s+ t)
Pα(T > t)

= lim
t→∞

Pα(T > s+ t)
Pα(T > t)

· Pα(Yt+s ∈ A | T > s+ t)

= Pν(T > s) · lim
t→∞
Pα(Yt+s ∈ A | T > s+ t)

using the finiteness of the limits and the previous result. Then, by the definition of ν as the QLD

of α we get

Pν(Ys ∈ A | T > s) = ν(A)

which proves that ν is a QSD. �

3.3 Exponential killing and exit state

A crucial observation in the case of quasi-stationary distributions is that they have a constant

rate of survival and death. This implies that the killing time is exponentially distributed as stated

in the next theorem. This property proves particularly useful in practical applications to answer

questions about survival time. We review here some major results on that point, mostly from

[9], [16] and [17]. In what follows we use the notation of section 3.1, where in particular T

denotes the killing time of the process.



Chapter 3. General theory on quasi-stationary distributions Page 15

Theorem 3.7. Let (Yt)t¾0 be a Feller process satisfying assumptions 1 and 2. If ν is a QSD, then

there exists ϑ ∈ ]0,+∞[ such that

∀t ¾ 0, Pν(T > t) = e−ϑt

meaning that, with initial distribution ν, T is exponentially distributed with parameter ϑ.

Proof. From equation (3.3) we have that, for any measurable function g : X → R positive or

bounded we have

∀t ¾ 0, Eν[1{T>t}g(Yt)] = ν (g)Pν(T > t) .

We take g : x 7→ Px(T > s), so that ν (g) = Pν(T > s) by proposition 2.5, and then

∀t ¾ 0, Eν[1{T>t}PYt
(T > s)] = Pν(T > s)Pν(T > t) .

Using the Markov property (proposition 2.6) we get, for every t, s ∈ R+,

Pν(T > t + s) = Eν[1{T>t+s}] = Eν[1{T>t} ·E[1{T>s} ◦ θt | Ft]]

= Eν[1{T>t} ·EYt
[1{T>s}]]

= Pν(T > t)Pν(T > s)

which implies that there exists ϑ ∈ R+ such that T is exponentially distributed with parameter

ϑ. Moreover, using assumption 2 we get ϑ > 0. �

Notation. Let ν be a QSD, then ϑ(ν) denotes the parameter given by theorem 3.7.

In particular, we can rewrite equation (3.3) so that ν ∈ P (Xtr) is a QSD if and only if there

exists ϑ > 0 such that

∀B ∈B(Xtr), ∀t ¾ 0, Pν(Yt ∈ B) = ν(B)e−ϑt . (3.4)

in which case ϑ = ϑ(ν).

Proposition 3.8. If ν is a QSD then, for any γ ∈ ]0,ϑ(ν)[, Eν[eγT ]<∞ and there exists x ∈ Xtr

such that Ex[eγT ]<∞.

Proof. Let γ ∈ ]0,ϑ(ν)[. Using theorem 3.7 we can calculate the first moment of eγT :

Eν[eγT ] =

∫ ∞

0

eγtϑ(ν)e−ϑ(ν)t dt =
ϑ(ν)
ϑ(ν)− γ

< +∞ .

Moreover, we have Eν[eγT ] =
∫

Xtr
Ex[eγT ]ν(dx) (see proposition 2.5) and the finiteness of the

integral proves the second part of the proposition. �

Remark. So far there is no equivalence between exponential killing and the existence of a QSD.

This result requires more assumptions and we will give one in particular in proposition 4.15.

Then, we prove the independence between the exit time T and the exit state YT . This prop-

erty is not actually useful for the practical models presented in chapters 4 and 5 where there is

only one possible exit state. But it is relevant for the study of the models presented in chapter 6

where the processes are in several dimensions and admit multiple absorbing states. The original

proof given in [9] is only true for the stopped process, so we give a new proof below, which is

more general and shorter.
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Theorem 3.9. Let ν be a QSD for the process Y satisfying assumptions 1 and 2. Then T and YT

are independent variables under Pν.

Proof. Let B ∈B(Xab) and a > 0. We notice that YT ◦θa is the same as YT when T > a, with θa

the shift operator. Thus, using the strong Markov property 2.16 we get

Pν(YT ∈ B | T > a) = Pν(YT ◦ θa ∈ B | Ya ∈ Xtr)

= Eν[Eν[1B(YT ) ◦ θa | Ya = x ∈ Xtr] | T > a]

= Eν[EYa
[1B(YT )] | T > a] .

Since ν is a QSD, Ya has distribution ν conditioned on T > a, by proposition 2.5 we have

Pν(YT ∈ B | T > a) =

∫

X
ν(dx)Ex[1B(YT )] = Pν(YT ∈ B)

which proves the independence. �

3.4 Characterization by the semigroup

There are several conditions related to the semigroup (Pt)t¾0 and to P1 in particular which

enable us to conclude that there exists a QSD, while staying in a rather general setting. The

results exposed here come from [9].

Let α ∈ M (Xtr). For any t ¾ 0, the mapping B 7→ α(Pt1B) on B(Xtr) defines a measure on

Xtr. We denote this measure by P†
t α. By linearization, this action can be defined for all finite

signed measures on Xtr, so that we have

∀ f ∈ L∞, (P†
t α)( f ) := α(Pt f ) . (3.5)

We notice that (P†
t )t is also a semigroup, acting in the space of measures, i.e. ∀t, s ¾ 0, P†

t+s =
P†

t ◦ P†
s . The verification is straightforward: for any f ∈ L∞ we have

P†
t ((P

†
s α) f ) = (P

†
s α)(P

†
t f ) = α(PsPt f ) = α(Pt+s f ) = (P†

t+sα) f .

Then, the result of equation (3.4) can be written as: ν ∈ P (Xtr) is a QSD if and only if there

exists ϑ(ν)> 0 such that

∀t ¾ 0, P†
t ν= e−ϑ(ν)tν . (3.6)

This is called the eigenmeasure equation, which is consistent with the discrete case studied in

chapters 4 and 5 where the QSD are given by eigenvectors of the transition function. As stated

by the following lemma, using P†
1 we can exploit a weaker condition for the existence of a quasi-

stationary distribution. We will use more practical results in applied cases, but this lemma is

interesting in its similarity to those stronger results, as it is essentially a more abstract phrasing

of it.

Lemma 3.10. Let Y satisfy assumption 1 and 2. Let ν̃ ∈ P (Xtr) and β > 0 be such that P†
1 ν̃= βν̃.

Then β < 1 and there exists a QSD ν whose exponential rate of survival is ϑ = − logβ > 0.
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Proof. From equation (3.2) we know that there exists n ∈ N such that Pν̃(T > n)< 1. Therefore,

βn = (P†
n ν̃)1{Xtr} = Pν̃(T > n) < 1 which proves that β < 1. Thus, taking ϑ := − logβ we have

ϑ > 0.

We know that Pt1B is measurable for any t ¾ 0 and B ∈B(Xtr). Thus, we can define

ν: B 7→
∫ 1

0

eϑsν̃(Ps1B)ds =

∫ 1

0

eϑs(P†
s ν̃)(B)ds .

By linearity and monotonicity, it comes that ν is a finite measure on Xtr. Let t ∈ ]0,1]. We have,

P†
t ν(B) = ν(Pt1B) =

∫ 1

0

eϑsP†
s ν̃(Pt1B)ds

=

∫ 1

0

eϑsP†
t+sν̃(B)ds =

∫ 1−t

0

eϑsP†
t+sν̃(B)ds+

∫ 1

1−t
eϑsP†

t+sν̃(B)ds

=

∫ 1

t
eϑ(u−t)P†

u ν̃(B)du+

∫ 1+t

1

eϑ(u−t)P†
u ν̃(B)du

= e−ϑt

∫ 1

t
eϑuP†

u ν̃(B)du+ e−ϑt

∫ t

0

eϑueϑ(P†
u P†

1 ν̃)(B)du

= e−ϑtν(B) .

Then, let t > 1. We can choose τ ∈ ]0,1] and k ∈ N such that kτ= t and using the previous

result we get

P†
t ν= P†

τ · · · P
†
τ

︸ ︷︷ ︸

k times

ν= (e−τϑ)kν= e−ϑtν

which proves that ν is a QSD using equation (3.6), after that we normalize it. �

There are some other conditions that can guarantee the existence of a quasi-stationary dis-

tribution. For example, if Xtr is a compact Hausdorff set and P1 preserves the set of continuous

functions. A couple of other interesting results of that sort are given in [9]. Nervertheless, we

will be interested in more practical cases from now on.



Chapter 4

Quasi-stationary distributions on

countable spaces

We use the notations defined in sections 2 and 3 but we suppose now that X is a discrete space,

not necessarily finite.

Remark. We already assumed that X is separable as part of being a Polish space. Since a discrete

space is separable if and only if it is countable, both terms, discrete and countable, are equivalent

here.

4.1 Introduction to jump processes

Let (Pt)t¾0 be a Feller semigroup on X. As in 3.1, we define Y as the càdlàg canonical process

of (Pt)t . In the discrete setting, and because of its regularity, Y is a jump process, meaning that

it has all its sample paths constant except for isolated jumps. The study of its specificities as a

jump process is the objective of this section.

The results given here are based mostly on [15] and [24]. They are general properties and

we don’t use assumptions 1 or 2 in this section.

The literature on QSDs with a discrete state space uses mathematical objects specific to this

discrete setting but seldomly explains how they sufficiently define the Markov process which is

studied and relate to quasi-stationary distributions. The purpose of this section is to explain how

we go consistently from the notions used in the general setting of chapter 3 to those that we will

use later in the applications.

As we will see, the regularity of Y allows us to consider the existence of quasi-stationary

distributions using various results. Then, in some applications, the burden becomes to prove

that the characterization of the process is that of a Feller process.

Since the sample paths of Y are càdlàg, it comes that there exists a sequence (Ti)i∈N of random

variables such that, for any ω ∈ Ω

T0(ω) = 0< T1(ω)¶ T2(ω)¶ T3(ω)¶ . . .¶∞

with ∀t ∈ [0, T1(ω)[, Yt(ω) = Y0(ω) and for any i ¾ 1, provided that Ti(ω) <∞, YTi
(ω) 6=

YTi−1
(ω) and ∀t ∈ [Ti(ω), Ti+1(ω)[, Yt(ω) = YTi

(ω). We can verify that they are stopping times

18
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as follows:

{Ti < t}=
⋃

q∈[0,t[∩Q

�

⋂

0¶ j¶i−1

{Yq 6= YT j
}

�

.

We first state some general results on jump state processes.

Proposition 4.1. Let Y be a càdlàg Feller process and x ∈ X. There exists q(x) ∈ R+ called the

jump rate of x such that the random variable T1 is exponentially distributed with parameter q(x)
under Px . Moreover, if q(x)> 0, T1 and YT1

are independent under Px .

This theorems translates as

∀t ∈ R+, Px(T1 > t) = e−q(x)t (4.1)

Proof. Let s, t ∈ R+. Let Z = 1{∀r∈[0,t],Yr=Y0}, i.e. Z(ω) = 1 if and only if ∀r ∈ [0, t],ωt = ω0.

Using tower property we have,

Px(T1 > s+ t) = Ex[1{T1>s} × Z ◦ θs]

= Ex[1{T1>s} ×Ex[Z ◦ θs | Fs]]

Then, we can use the Markov property 2.6, and we get

Px(T1 > s+ t) = Ex[1{T1>s} ×EYs
[Z]]

= Ex[1{T1>s} × Px(T1 > t)]

= Px(T1 > s) · Px(T1 > t)

using that Ys = x whenever 1{T1>s} is non-zero. This implies that T1 is exponentially distributed.

Assume now q(x) > 0 so that T1 <∞ Px − a.s.. Let t ¾ 0 and y ∈ E. Let F be the random

variable on Ω such that F(ω) = 1 if T1 <∞ and YT1
(ω) = y , and 0 otherwise. With arguments

similar to the first part of the proof we get

Px(T1 > t, YT1
= y) = Ex[1{T1>t} × F ◦ θt]

= Ex[1{T1>t} ×EYt
[F]]

= Ex[1{T1>t} × Px(YT1
= y)]

= Px(T1 > t) · Px(YT1
= y)

so we can conclude that T1 and YT1
are independent under Px . �

Remark. If assumption 2 of sure killing holds, we can observe that x ∈ Xtr implies q(x) > 0. In

that case, the only states such that q(x) = 0 are in Xab.

In the literature, a state x is sometimes qualified as permanent if q(x) = 0, stable if 0 <

q(x) < ∞ and instantaneous if q(x) = ∞. However, the latter is not compatible with the

assumption of right continuity, and it should not be confused with the notion of instantaneous

transition rate that we will define.

The transition function (Pt) is called stable itself when it has no instantaneous jump rate,

which is the case here.
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For every x , y ∈ X, we set the conditional transitions,

Π(x , y) :=

¨

Px(YT1
= y) if q(x)> 0

0 if q(x) = 0
(4.2)

Note that ∀x ∈ X,Π(x , x) = 0.

Definition 4.2. For every x , y ∈ X, we define the (instantaneous) transition rate from x to y

q(x , y) :=

¨

q(x)Π(x , y) if y 6= x

−q(x) if y = x
.

The matrix Q := (q(x , y))x ,y∈X is called the transition rate matrix.

In the literature we normally start from those transition rates to then identify the quasi-

stationary distributions when they exist. Moreover, it is easy to show that, in a discrete space,

when the jump rates are bounded the process is automatically Feller. In particular, that is the

case when X is finite. But in general there is no bound so it must be proved that the process is

Feller.

Remark. The matrix Q is said to be conservative because its rows sum to zero:

∀x ∈ Xtr,
∑

y∈X

q(x , y) = q(x)

 

−1+
∑

y 6=x

Π(x , y)

!

= q(x) (−1+Π(x ,X)) = 0 .

Proposition 4.4 shows how this relates to the transition function through its generator (see

2.11). But before that we need an additional assumption for some crucial results to hold.

For any x ∈ X we denote by A(x) the set of states accessible in one jump from x , i.e.

A(x) = {y ∈ X | q(x , y)> 0} (4.3)

Assumption 3. The càdlàg Feller process Y on X with transition rate matrix Q satisfies

∀x ∈ X, sup
y∈A(x)

q(y)<∞ .

We can see that this assumption is clearly verified when A(x) is finite for all x , which will

be the case of all the models that we will study. As a subcase of this, the assumption is satisfied

when X itself is finite.

Lemma 4.3. Let Y satisfy assumption 3, and let x ∈ X such that q(x)> 0. Then,

Px(T2 ¶ t) =
0

O(t2) .

Proof. First, we use the strong Markov property 2.16 at T1:

Px(T2 ¶ t)¶ Px(T1 ¶ t, T2 ¶ T1 + t) = Ex[1{T1¶t} · 1{T2¶T1+t}]

¶ Ex[1{T1¶t} ·Ex[1{T1¶t} ◦ θT1
| FT1

]]

¶ Ex[1{T1¶t} · PYT1
(T1 ¶ t)] .

Then, we bound using proposition 4.1,

PYT1
(T1 ¶ t)¶ sup

y∈A(x)
Py(T1 ¶ t)¶ t sup

y∈A(x)
q(y)

and similarly Px(T1 ¶ t)¶ q(x)t, which gives Px(T2 ¶ t)¶ t2q(x) supy∈A(x) q(y) = O(t2). �
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Proposition 4.4. Let Y satisfy assumption 3, and let L denote the generator of (Pt)t¾0, the transi-

tion function of Y . Then D(L) = C0(X) ⊂ L∞, where D(L) is the domain of L and C0(X) is the set

of continuous functions on X that tend to 0 at infinity, as defined in section 2.3.

Moreover, for every ϕ ∈ D(L) and every x ∈ X,

Lϕ(x) = q(x)
∑

y 6=x

Π(x , y)(ϕ(y)−ϕ(x)) =
∑

y∈A(x)

q(x , y)ϕ(y)

and we can extend L to L∞ so that this formula still holds and there is convergence in L∞.

Proof. Let ϕ ∈ L∞ and x ∈ X. If q(x) = 0, then from 2.2 and the definition 3.1 of absorbing

states we get ∀t ∈ R+, Ptϕ(x) = ϕ(x) and so

Lϕ(x) = lim
t↓0

Ptϕ(x)−ϕ(x)
t

= 0 .

Suppose now that q(x)> 0. We have

Ptϕ(x) = Ex[ϕ(Yt)]

= Ex[ϕ(Yt)1{T1>t}] +Ex[ϕ(YT1
)1{T1¶t}] +Ex[(ϕ(Yt)−ϕ(YT1

))1{T2¶t}]

Since ϕ is bounded we have
�

�Ex

�

(ϕ(Yt)−ϕ(YT1
))1{T2¶t}

��

�¶ Ex

��

�ϕ(Yt)−ϕ(YT1
)
�

�1{T2¶t}
�

¶ 2‖ϕ‖∞ · Px(T2 ¶ t)

= O(t2)

so that, using lemma 4.3 and the independence of T1 and YT1
we get

Ptϕ(x) = ϕ(x)e
−q(x)t + (1− e−q(x)t)

∑

y∈A(x)

Π(x , y)ϕ(y) +O(t2) .

We complete the proof with

Lϕ(x) = lim
t→0

Ptϕ(x)−ϕ(x)
t

= −q(x)ϕ(x) + q(x)
∑

y∈A(x)

Π(x , y)ϕ(y) .

�

We still need to introduce an additional concept, adapted from [24], which is very common

in the literature about jump processes and quasi-limiting distribution.

Proposition 4.5. Let Y be a jump process and define p : R+ ×X×X→ R+ by

p(t, x , y) := Px(Yt = y) = Pt(x , {y}) .

Then, for any t ∈ R+, the transition probability Pt can be represented by the matrix (p(t, x , y))x ,y∈X

and we have, for any measurable function f : X→ R bounded or nonnegative,

∀x ∈ X, Pt f (x) =
∑

y∈X

p(t, x , y) f (y) .

By extension we also often call p the transition function.
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Proof. The second equality in the definition of p is given using definition 2.3:

Px(Yt = y) = Ex[1{y}(Yt)] = Pt1{y}(x) =
∑

z∈X

Pt(x , {z})1{y}(z) = Pt(x , {y}) .

The second result is a direct application of equation (2.2) since we have a discrete topology. �

When (Pt) is taken as a matrix, the generator can then be described in the same way. From

proposition 4.4 it is clear that L is described by (q(x , y))x ,y∈X and we have

Q = lim
t↓0

Pt − I
t

(4.4)

where I is the identity matrix. Thus, by proposition 2.13, Q completely describes the transition

function. The interpretation of q(x , y) as an instantaneous rate of transition is then given by the

following proposition.

Proposition 4.6. Let Y satisfy assumption 3. Then, for any x , y ∈ X we have,

q(x , y) =
d
dt
Px(Yt = y)|t=0 = p′(0, x , y) .

Proof. When we apply proposition 4.4 with ϕ = 1{y} we get L1{y}(x) = q(x , y). Moreover,

using definition 2.11 of the generator we have

L1{y} = lim
t↓0

1
t

�

Pt1{y} − 1{y}
�

= lim
t↓0

1
t

�

Pt1{y} − P01{y}
�

and we conclude using that Px(Yt = y) = Ex[1{y}(Yt) | F0] = Pt1{y}(x). �

More generally, a well-known property (Cf [24] for example) is that, provided that there is

no instantaneous jump rate, the transition function satisfies the Kolmogorov’s backward equation,

∀t ¾ 0, P ′(t) =QP(t) (4.5)

and when we have ∀t ¾ 0,∀x ∈ X,
∑

y∈X p(t, x , y)q(y) <∞ then the Kolmogorov’s forward

equation applies too:

∀t ¾ 0, P ′(t) = P(t)Q . (4.6)

4.2 Useful results in discrete space

We can now give more specific results about jump processes in the setting given before,

featuring an absorbing set with sure killing. This means that Y , still defined as the canonical

càdlàg Feller process with semigroup (Pt), satisfies now assumptions 1 and 2.

Recall that we denote by T the hitting time of the absorbing set Xab and by Y T the stopped

process (Yt∧T )t¾0. To use Y T here makes sense in the context of quasi-stationary distributions

since we are essentially interested in what happens before T . In particular, we can rewrite

Π(x , y) as equal to Px(Y T
T1
= y) for any x ∈ X.



Chapter 4. Quasi-stationary distributions on countable spaces Page 23

We create, for the following proposition a transition probability K (as defined in 2.1) by

∀x ∈ X,∀A∈B(X), K(x , A) :=

¨

Px(YT1
∈ A) if x ∈ Xtr

1A(x) if x ∈ Xab
(4.7)

which on Xtr can be seen as an extension of Π.

Proposition 4.7. Let x ∈ X. The sequence Y0, Y T
T1

, Y T
T2

, . . . is under Px a discrete Markov chain with

transition kernel K started from x. Furthermore, for every i ∈ N∗, conditionaly on Ti <∞ and

(Y0, YT1
, . . . , YTi

) the random variables T1 − T0, . . . , Ti − Ti−1 are independent and the conditional

distribution of Ti − Ti−1 is exponential with parameter q(YTi−1
).

Proof. Let x ∈ X, k ∈ N and A∈B(X). Using the strong Markov property 2.16 at Tk we get

Px(Y
T

Tk+1
∈ A | FTk

) = EY T
Tk
[1{Y T

T1
∈A}] = PY T

Tk
(Y T

T1
∈ A) = K(Y T

Tk
, A)

which proves that this is a Markov chain. Then, let x , y ∈ Xtr, z ∈ X and f1, f2 ∈ L∞(R+).
Again, using the strong Markov property at T1 we get

Ex[1{T2<∞}1{YT1
=y} f (T1)1{YT2

=z} f (T2 − T1)]

= Ex[1{T2<∞}1{YT1
=y} f1(T1)EYT1

[1{YT1
=z} f2(T1)]]

= Ex[1{YT1
=y} f1(T1)]Ey[1{YT1

=z} f2(T1)]

= q(x , y)q(y, z)

∫ ∞

0

e−q(x)s1 f1(s1)ds1

∫ ∞

0

e−q(y)s2 f2(s2)ds2 .

Arguing by induction, we have similarly, for every y0, y1, . . . , yp−1 ∈ Xtr, yp ∈ X and f1, . . . , fp ∈
L∞(R+),

Ey0
[1{Tp<∞}1{YT1

=y1}1{YT2
=y2} · · ·1{YTp=yp} f1(T1) f2(T2 − T1) · · · fp(Tp − Tp−1)]

=
p
∏

i=1

�

q(yi−1, yi)

∫ ∞

0

e−q(yi−1)s fi(s)ds

�

The remaining assertions of the proposition follow. �

This is what justifies the notation of Xtr, its elements are the transient states of the discrete-

time Markov chain (Y T
Ti
). Indeed, for a discrete-time Markov chain, states are either transient

or recurrent. If x ∈ X is transient, then, when the Markov chain starts at x , there is a positive

probability that it will never return to that state. On the contrary, if x is recurrent, then the

Markov chain will take the value x again with probability 1. Clearly, a recurrent state in Xtr

would break assumption 2, so all the states in Xtr are necessarily transient.

It is now necessary to introduce the concept of explosiveness, to better rule out this possibility

after.

Definition 4.8. A jump process (Yt)t¾0 with jump times denoted by T1, T2, . . . , is said to be

explosive if there exists a state x ∈ X such that Px(T∞ <∞)> 0, with T∞ = limn→∞ Tn.
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As a consequence, a process is non-explosive if it satisfies

∀α ∈ P (X), Pα(T∞ =∞) = 1 . (4.8)

A non-explosive right-continuous jump process is also said to be regular. It makes sense for us

to look for non-explosive processes in order to study birth-and-death processes and epidemics:

the number of people born, deceased or infected in a given period of time is naturally finite. As

we will show now, this is always the case with the assumptions that we already have.

Proposition 4.9. Let Y be a càdlàg Feller process. Then Y is non-explosive. Moreover, if Y satisfies

assumptions 1 and 2, for any x ∈ Xtr, the number of jumps before T under Px is almost surely

finite.

Proof. In the countable setting, Xab is reached at the first jump to one of its states and we will

show that there can only be a finite number of jumps before. Indeed, if there was an infinite

number of jumps in any [0, t] with t ∈ R+ then, using the Bolzano-Weierstraß property, we

would find a point τ limit of a subsequence of (Ti)i∈N. But then the sample path at τ couldn’t

have both a left limit and a right limit in the discrete topology, breaking the definition of Y as

càdlàg. Thus, the process is non-explosive.

In particular, with any ω ∈ {T <∞} we know that there are only finitely many jumps in

[0, T (ω)]. We can then conclude using assumption 2. �

Remark. When Xab is a singleton, then ∀ω ∈ Ω,∃p ∈ N∗, YT (ω) = YTp
(ω) and Tp+1(ω) =∞,

implying that the following terms are infinite as well.

Proposition 4.10. Let Y satisfy assumptions 1 and 2. Then there exists x ∈ Xtr such that

Px(T1 = T )> 0.

This result can also be written as Px(YT1
∈ Xab) = K(x ,Xab)> 0 where K is the kernel defined

by (4.7), or equivalently
∑

y∈Xab
q(x , y) > 0. This result is intuitive and key to understand our

processes, but not formally proved in our sources. Therefore, we give an original proof of it.

Proof. Suppose by contradiction that ∀x ∈ Xtr,Px(T1 = T ) = Px(YT1
∈ Xab) = 0.

Let x ∈ Xtr and n ∈ N. Using the strong Markov property we get

Px(YTn
∈ Xab) = Ex

�

Ex[1Xab
(YTn
) | Fn−1]

�

= Ex

�

EYTn−1
[1Xab

(Y1)]
�

= Px(YTn−1
∈ Xtr) ·Ex

�

EYTn−1
[1Xab

(Y1)] | YTn−1
∈ Xtr

�

+ Px(YTn−1
∈ Xab) ·Ex

�

EYTn−1
[1Xab

(Y1)] | YTn−1
∈ Xab

�

= 0+ Px(YTn−1
∈ Xab)

and arguing by induction from Px(YT0
∈ Xab) = 0 we get Px(YTn

∈ Xab) = 0. Thus, Xab cannot

be reached in a finite number of jumps, but non-explosiveness implies that T∞ =∞ almost

surely so this would contradict the sure killing assumption. �

Let Q = (q(x , y))x ,y∈X be the transition rate matrix and Qtr = (q(x , y))x ,y∈Xtr
its restriction

to Xtr. The matrix Qtr is said to be a defective generator since its entries sum to a negative value,

as a consequence of proposition 4.10.
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Definition 4.11. Let Z be a subset of X. A matrix M = (mx ,y)x ,y∈Z is irreducible if for any pair

(x , y) ∈ Z2, x 6= y , there exists an integer n and a sequence z1, z2, . . . , zn−1 in Z\{x , y} such that

all zi are distincts and we have

m(x , z1)> 0, m(zn−1, y)> 0 and ∀i ∈ {1, . . . , n− 2}, m(zi , zi+1)> 0 .

The process Y is said to be irreducible if Qtr is irreducible.

For Y to be irreducible means that there always exists a “path” between two transient states.

Proposition 4.12. If X is discrete and Y is irreducible then ∀t > 0,∀x , y ∈ Xtr, p(t, x , y)> 0.

We sometimes say that Y is aperiodic because of that property, by similarity with the discrete-

time case. This result is the reason why it is often easier to work with Q: for each x ∈ X there

are often only a finite number of y such that q(x , y)> 0. So the action of Q as an operator can

be described simply. On the contrary, for each Pt with t > 0, if Q is irreducible then P1 has all

its terms positive, except those of some absorbing states.

The following proof is also an original work.

Proof. Let t > 0 and x , y ∈ Xtr. Then, by definition 4.11 there exist n ∈ N∗ and states z1, z2, . . . , zn−1

such that q(x , z1)> 0, q(zn−1, y)> 0 and ∀i ∈ {1, . . . , n− 2}, q(zi , zi+1)> 0. Let

A=
�

YT1
= z1, . . . , YTn−1

= zn−1, YTn
= y

	

and B =
n

T1 ¶
t
n

, T2 − T1 ¶
t
n

, . . . , Tn − Tn−1 ¶
t
n

, Tn+1 − Tn > t
o

.

Then, using proposition 4.7 we have

p(t, x , y) = Px(Yt = y)¾ Px(A∩ B) = Px(A) · Px(B) .

Since all the states are in Xtr we get

Px(A) =
q(x , z1)

q(x)
×

q(z1, z2)
q(z1)

× · · · ×
q(zn−1, y)
q(zn−1)

> 0

and

Px(B) = Px(Tn+1 − Tn > t) ·
n
∏

i=1

Px(Ti − Ti−1)> 0

which completes the proof. �

In some applications in section 6, we will be interested in state spaces whose absorbing set

contains an infinity of states. As it is easier to work with processes which admit only one ab-

sorbing state, we will show that the dishonest transition function obtained by restricting (Pt)t
to Xtr can be made into an honest one by adding only one state. This new state and can then

be used as an equivalent of Xab for the analysis of what happens before T . This proposition is

taken from [2].
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Proposition 4.13. Let (Rt)t be a dishonest transition function on a countable set E. Let φ be a

point not in E and define Eφ = E ∪ {φ} and

∀(x , y) ∈ Eφ ,∀t ∈ R+, Rφt (x , {y}) =



















Rt(x , {y}) if x , y ∈ E

1− Rt(x , E) if x ∈ E, y = φ
0 if x = φ, y ∈ E

1 if x = y = φ

.

Then, (Rφt )t is an honest transition function on Eφ .

Proof. It is straightforward from its definition that (Rφt )t is a collection of transition probabilities,

so we only need to check that it satisfies the Chapman-Kolmogorov equation. Moreover, in the

discrete topology it is enough to verify it on singletons. Let s, t ∈ R+ and x , y ∈ Eφ .

If x , y ∈ E we have

Rφs Rφt (x , {y}) =
∑

z∈E

Rs(x , {z})Rt(z, {y}) + Rφs (x , {φ})Rφt (φ, {y})

= Rs+t(x , {y}) + 0= Rφs+t(x , {y})

If x ∈ E and y = φ then

Rφs Rφt (x , {y}) =
∑

z∈E

Rs(x , {z})(1− Rt(z, E)) + (1− Rt(x , E))

= 1−
∑

z∈E

Rs(x , {z})Rt(z, E)

= 1− Rs+t(x , E) = Rφs+t(x ,φ) .

If x = φ and y ∈ E then Rφs Rφt (x , {y}) = 0 = Rφs+t(x , {y}), and finally if x = y = φ then

Rφs Rφt (x , {y}) = 1= Rφs+t(x , {y}). �

4.3 Existence of a QSD

Results of this section come from [17] but seemed to be originally incorrect on some points.

They were corrected and adapted to the discrete case.

Let Y be a càdlàg Feller process satisfying assumptions 1, 2 and 3, with semigroup (Pt)t and

generator L. Let T be the hitting time of the absorbing set Xab. We denote by D(L) the domain

of L (Cf definition 2.11) and

∆= {1B | B ⊂ Xtr, |B|<∞} . (4.9)

Lemma 4.14. We have ∆ ⊂ D(L) and, for any set A ⊂ Xtr, there exists a uniformly bounded

sequence ( fn)n in ∆ converging point wisely to 1A.

Proof. By proposition 4.4 we have D(L) = C0(X). The functions in ∆ are trivially continuous

since we are in a discrete space, and tend to 0 at infinity because they have a compact support.

Thus, ∆ ⊂ D(L).
Now, let A ⊂ Xtr. If A is finite we can put ∀n ∈ N, fn := 1A. If A is not finite then, since the

space is countable, we can write A = {a1, a2, a3, . . .} for some distinct a1, a2, a3, . . . ∈ Xtr. For

every n ∈ N we set fn as the indicator function of {a1, . . . , an}. It is direct to verify that those

functions are uniformly bounded (by 1) and converge pointwise to 1A. �
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Proposition 4.15. Let ν ∈ P (Xtr). Then ν is a quasi-stationary distribution if and only if

∃ϑ(ν)> 0,∀ f ∈ D(L), ν(L f ) = −ϑ(ν)ν( f ) .

Proof. 1. Let ν be a QSD for Y . Using the definition 2.3 of homogeneous Markov processes

in equation (3.4) we get

∀t ∈ R+,∀A∈B(Xtr), ν(Pt1A) = ν(A)e
−ϑ(ν)t

where ϑ(ν) ∈ R+ is given by theorem 3.7. In the discrete setting it is then straightforward

that

∀ f ∈ D(L), ν(Pt f ) = e−ϑ(ν)tν( f ) .

Then, we use Kolmogorov’s forward equation (4.6) to get

∀ f ∈ D(L),∀x ∈ X,

�

�

�

�

∂ Pt f
∂ t
(x)

�

�

�

�

= |Pt L f (x)|¶ ‖L f ‖∞ < +∞ .

This implies that we can differenciate ν(Pt f ) =
∑

y∈Xtr
Pt f (x)ν({x}) under the sign sum,

and this yields ∀ f ∈ D(L),ν(L f ) = −ϑ(ν)ν( f ).

2. Assume now that ∀ f ∈ D(L),ν(L f ) = −ϑ(ν)ν( f ). Using Kolmogorov’s backward equa-

tion and the same derivation argument we get

∀ f ∈∆,
∂ ν(Pt f )
∂ t

= ν(LPt f ) = −ϑ(ν)ν(Pt f )

since Pt f is still in D(L) by proposition 2.12. We deduce that

∀ f ∈ D(L), ν(Pt f ) = e−ϑ(ν)tν( f ) .

Let A ⊂ X. From lemma 4.14, there exists a uniformly bounded sequence ( fn) in D(L)
which converges point-wisely to 1A. Therefore, by dominated convergence we get

ν(Pt1A) = e−ϑ(ν)tν(A)

and as stated in section 3.3 this is equivalent to ν being a QSD.

�

4.4 Some results on birth-and-death processes

Before going further into details about epidemic models, we review some results on birth-

and-death processes. This is useful in so far as it is one of the most studied application of

quasi-stationary distributions and some results can be applied without much change to epidemic

models. This section is mostly based on [17].
We assume now X = N and Xab = {0}, meaning that the system is isolated: there is no

immigration so when we reach 0 the system does not evolve anymore. We still denote by (Yt)t¾0

our Markov process, which gives here the size of the population.

As in the previous section we denote by q(x , y) the transition rate from x to y . The standard

condition characterizing birth-death processes is

∀i, j ∈ N, |i − j|> 1 =⇒ q(i, j) = 0 (4.10)

meaning that there cannot be several births or deaths at the exact same time.
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If we exclude q(0,0) which is trivial, then it remains a defective transition matrix. This

matrix can be described more simply by a birth rate sequence (λi)i¾1 and a death rate sequence

(µi)i¾1 such that q(0, 1) = 0 and

∀i ∈ N∗, q(i, i + 1) = λi > 0, q(i, i − 1) = µi > 0, q(i, i) = −(λi +µi) . (4.11)

Remark. From the positivity conditions above we notice that Qtr is irreducible by construction.

We can also see that assumption 1 is a consequence of the definition of the birth and death rates,

so it is always verified by a birth-and-death process.

A first classic model is that of linear birth-and-death process, for a case when individuals

reproduce and die independently from the number of other people. Formally, there exist λ,µ¾ 0

such that for all i ∈ N∗, λi = iλ and µi = iµ. In that case, λ and µ are simply named birth rate

and death rate respectively.

A more evolved model is the logistic birth-and-death process where individuals compete to

share ressouces in a finite environment. Thus, each individual j creates a competition pressure

on any individual k 6= j, with a factor c > 0 such that the individual death rate due to competition

is c(i − 1) when the population’s size is i. Overall we have

∀i ∈ N∗, λi = iλ, µi = iµ+ i(i − 1)c

where λ and µ are still positive real numbers.

Note that we should verify that these processes are Feller. We will skip this matter for now and

study it in chapter 6. In particular, the fact that the two models above are Feller is a consequence

of proposition 6.5. In the rest of this section we just assume that the model considered is Feller.

The following result is a classic condition to ensure that the process considered through its

birth rate and death rate sequences does not explode. Thus, it is a limitation that we need to

consider when we are looking for quasi-stationary distributions.

Proposition 4.16. A birth-and-death process Y with birth rates (λi) and death rates (µi) satisfies

assumption 2, i.e. goes almost surely to extinction, if and only if

∞
∑

k=1

µ1 · · ·µk

λ1 · · ·λk
= +∞ .

Proof. Let (ui) be the sequence given by ∀i ∈ N, ui = Pi(T <∞). We have

Pi(T <∞) = Pi(T <∞, YT1
= i − 1) + Pi(T <∞, YT1

= i + 1)

= Pi(YT1
= i − 1) · Pi(T <∞| YT1

= i − 1)

+ Pi(YT1
= i + 1) · Pi(T <∞| YT1

= i + 1) .

So that, with the strong Markov property and the notation that we introduced we get

∀i ∈ N∗, λiui+1 − (λi +µi)ui +µiui−1 = 0 . (4.12)

For every j ∈ N we denote by τ j the hitting time of the state j and τ∞ = lim j→∞τ j . Moreover,

for all i, j ∈ N we define u( j)i := Pi(T < τ j). In particular, we have lim j→∞ u( j)i ¶ ui . We

assumed that the process is Feller, so by proposition 4.9 we get ∀i,Pi(τ∞ =∞) = 1, and then

lim j→∞ u( j)i = ui .
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We also set ∀i ∈ N, Ui :=
∑i−1

k=1
µ1···µk
λ1···λk

. From the definition of u( j)i and since we can not “skip”

states, we have ∀i ¾ j, u( j)i = 0 and similarly to the result above we get

∀i ∈ {1, . . . , j − 1}, λiu
( j)
i+1 − (λi +µi)u

( j)
i +µiu

( j)
i−1 = 0 .

It is then direct to verify that the solution to these equations is

∀i ∈ {1, . . . , j − 1}, u( j)i =
1

1+ U j

j−1
∑

k=i

µ1 · · ·µk

λ1 · · ·λk
.

In particular, u( j)1 =
U j

1+U j
, hence u1 =

U∞
1+U∞

. Thus, U∞ =∞ implies u1 = 1 and using

equation (4.12) it follows that ∀i ∈ N,Pi(T <∞) = 1. Conversely, if Y satisfies assumption 2,

then u1 = 1, which implies U∞ =∞. �

Corollary 1. 1. The linear birth-and-death process with rates λi and µi satisfies assumption 2

if and only if λ¶ µ.

2. The logistic birth-and-day process goes almost surely to extinction.

This is a direct application of the previous proposition. We give an original proof of it: in

[17] the first case is justified differently and the second has no proper proof at all.

Proof. 1. The series
∑∞

k=1
µ1···µk
λ1···λk

is now that of a geometric sequence with ratio µ
λ . Therefore,

it is infinite if and only if µλ ¾ 1 and we conclude by proposition 4.16.

2. In the case of the logistic birth-and-day process we have, for any k ∈ N∗,

µ1 · · ·µk

λ1 · · ·λk
=

∏k
i=1(µi + ci(i − 1))

k!λk
¶ µ

� c
λ

�k
(k− 1)!

which gives us limk→∞
µ1···µk
λ1···λk

= +∞. Therefore its series sums up to +∞ and we con-

clude by theorem 4.16.

�

We are generaly interested in the extinction rate and its evolution, defined by

∀α ∈ P (X),∀t ¾ 0, rα(t) = −
∂
∂ tPα(T > t)

Pα(T > t)
(4.13)

and from theorem 3.7 it is clear that if α is a QSD then rα is constant and equal to ϑ(α).
Consistently with this, a result from [17] that we do not reproduce here shows that if α

admits a QLD ν then there exists a long term mortality plateau such that limt→∞ rα(t) = rν(0).

Now that we have characterized birth-and-death processes and their relation to the previous

results, we can focus on quasi-stationary distributions.

Notation. When talking about a distribution α over X we will now use equivalently the sequence

(αi)i∈N where ∀i ∈ N,αi = α({i}). A sufficient and necessary condition on (αi)i to represent a

distribution is that all its terms are non-negative and sum up to 1. Moreover, if α = (αi)i¾1 is a

distribution on Xtr, we implicitely extend it to X by the use of α0 = 0.
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Theorem 4.17. Let Y be a Feller birth-and-death process satisfying assumptions 1 and 2, with birth

rates (λi) and death rates (µi). A distribution ν ∈ P (Xtr) is a QSD for Y if and only if

∀i ¾ 1, λi−1νi−1 − (λi +µi)νi +µi+1νi+1 = −µ1ν1νi

and −(λ1 +µ1)ν1 +µ2ν2 = −µ1ν
2
1.

Proof. Let ν be a QSD. Then from proposition 4.15 we know that there exists ϑ > 0 such that

∀ f ∈ D(L),ν(L f ) = −ϑν( f ). The matrix interpretation of this property is
 

∑

j

ν jq( j, i)

!

i

= −ϑ× (νi)i

and, in the case of birth-and-death processes, element by element this gives us

∀i ∈ N∗, νi−1q(i − 1, i) + νiq(i, i) + νi+1q(i + 1, i) = −ϑνi .

With the specific notation we get

∀i ¾ 2, νi−1λi−1 − νi(λi +µi) + νi+1µi+1 = −ϑνi

and −(λ1 +µ1)ν1 +µ2ν2 = −ϑν1. Then, summing over all elements,
∑

i∈N
λiνi +

∑

i∈N
(λi +µi)νi +

∑

i∈N
µiνi −µ1ν1 = −ϑ .

Therefore, ϑ = µ1ν1, which concludes the proof. �

Following this theorem, we can find in the literature (in particular [27]) that there exist a

parameter ξ1 and a series (S) on which depend the existence and number of quasi-stationary

distributions.



Chapter 5

The case of epidemic modelling

We will now study more specifically the case of epidemics and the quasi-stationary distributions

of their related models. This is generally more complex than the modelling of a population and

we need to make some practical assumptions in addition to mathematical considerations.

In particular, we will suppose that there is homogeneous mixing, meaning that all individuals

have the same probability of meeting and infecting each other. In some papers, e.g. [11], the

case of heterogeneous mixing is studied as well.

In this chapter we will consider directly stochastic models and not deterministic ones. Those

stochastic models are often introduced through infinitesimal transition probabilities of the form

p(δt, x , y) with δt a small interval of time. Instead, we will present the models directly from

transition rates, which provide a more rigorous description and allow us to use results from the

previous sections.

5.1 Results in a finite state space

The most basic models in epidemic modelling often occur in a finite state space. In that

setting all the results given in chapter 4 still hold but we have access to stronger results regarding

quasi-stationary distributions. We will review some of them from [17].
To this end we consider a Feller process Y on the state space X = {0, . . . , N} and satisfying

assumption 1 with Xab = {0}, meaning that Xtr = {1, . . . , N}. Its transition function is still

denoted by (Pt) and the killing time by T .

Remark. A Markov process with bounded jump rates q(i) corresponds to a Feller process. This

is clearly verified in a finite state space as long as no jump rate is infinite.

The first proposition is an original work and provides a link with the assumptions of the

previous chapters. It shows that, in the finite case, it is unnecessary to make assumption 2 or

prove it since it is a direct consequence of the model.

Proposition 5.1. Let Y be an irreducible càdlàg Feller process on {0, . . . , N} with absorbing state

0, satisfying assumption 1. Then, Y satisfies assumption 2 of sure killing if and only if there exists

x ∈ {1, . . . , N} such that q(x , 0)> 0.

Proof. The first implication is given by proposition 4.10. Suppose now that we have x such that

31
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q(x , 0)> 0 and let y ∈ {1, . . . , N}. Using the Markov property and proposition 4.1 we get

Py(Y1 = 0)¾ Py(Y1/2 = x , Y1 = 0)

= p(1/2, y, x) · Py(Y1 = 0 | Y1/2 = x)

= p(1/2, y, x) · Px(Y1/2 = 0)

¾ p(1/2, y, x) · Px(YT1
= 0, T1 ¶ 1/2)

= p(1/2, y, x) ·
q(x , 0)
q(x)

· (1− e1/2)

From proposition 4.12 we conclude that there exists εy ∈ ]0, 1] such that p(1, y, 0) = εy .

The same is true for any state in Xtr so we can take ε := miny∈Xtr
εy > 0 such that ∀y ∈

Xtr, p(1, y, 0) ¾ ε. Let α be an initial distribution over X and (un)n the sequence given by

∀n ∈ N, un = Pα(T < n). From the previous calculations it comes that

∀n ∈ N, un ¾ un−1 + ε(1− un−1) .

Therefore, the sequence (un)n converges to 1, which proves that there is sure killing. �

The distributions, that we wrote as sequences in chapter 4 can now be represented as vec-

tors in RN+1, and we use them as column matrices. Then, a straightforward calcultation from

proposition 2.5 gives us that, with an initial distribution α= (αi)0¶i¶N , the distribution of Yt is

given by αTPt where the transition probability Pt is taken as the matrix (p(t, i, j))0¶i, j¶N and

αT is the transpose of α, that is α taken as a line matrix.

We truncate (Pt) of {0} to create the submarkovian semigroup (Rt)t∈R+ given by

∀t ∈ R+, Rt := (p(t, i, j))1¶i, j¶N (5.1)

where p is the transition function defined in 4.5. Then, equation (3.4) gives us that a distribution

ν ∈ P (Xtr) is a QSD if and only if there exists ϑ(ν)> 0 such that

∀t ∈ R+, νTRt = e−ϑ(ν)tν (5.2)

meaning that, for any t, ν is a left eigenvector of Rt with eigenvalue e−ϑ(ν)t .

Additionaly, in the finite case, the forward and backward Kolmogorov’s equations happen to

have a simple solution, which is

∀t ∈ R+, Pt = etQ, Rt = etQtr , (5.3)

where eA =
∑∞

k=0
Ak

k! .

The following theorem extends on those considerations.

Theorem 5.2. Let Y be an irreducible càdlàg Feller process on {0, . . . , N} satisfying assumptions 1

and 2. Then the Yaglom limit exists and is the unique QSD of Y .

Moreover, if we denote by ν this QSD and by ϑ(ν) its extinction rate, as given by theorem 3.7,

there exists π ∈ P (Xtr) such that for any i, j ∈ Xtr,

lim
t→∞
Pi(Yt = j) = e−ϑ(ν)tπiν j and lim

t→∞

Pi(T > t + s)
P j(T > t)

=
πi

π j
e−ϑ(ν)s .
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The proof of this theorem relies essentially on the Perron-Frobenius theorem that follows.

We give it as stated in [17], which is more specific than the well-known usual theorem. The

proof is not given in that paper either and the references given do not seem to contain the

complete proof. Nonetheless, this result is covered completely across several theorems in the

book [25] by Seneta, when we recall equation (5.3) and use its theorem 2.7 to extend the usual

Perron-Frobenius theorem.

Theorem 5.3 (Perron-Frobenius Theorem). Let (Rt) be a submarkovian semigroup on {1, . . . , N}
such that P1 is positive in the sense that all its entries are. Then, there exists a unique simple

positive eigenvalue ρ of R1, which is the maximum of the modulus of the eigenvalues. There exists

a unique left-eigenvector ν ∈ RN such that ∀i,νi > 0 and
∑

i νi = 1, and there exists a unique

right-eigenvector π ∈ RN such that ∀i,πi > 0 and
∑

i αiπi = 1, satisfying

νTR1 = ρν, R1π= ρπ .

Moreover, ρ < 1, so there exists ϑ > 0 such that ρ = e−ϑ and we have

∀t > 0, Rt = e−ϑtπνT +M(e−ξt)

where ξ > 0 and M(e−ξt) denotes a matrix such that none of the entries exceeds Ce−ξt for some

constant C > 0.

Proof of theorem 5.2. Since Y is irreducible we know from proposition 4.12 that R1 has only

positive entries. Therefore, the Perron-Frobenius theorem applies. We get that there exist ϑ > 0

and π,ν ∈ P (Xtr) such that

∀i, j ∈ Xtr, eϑtPi(Yt = j) = eϑt[Pt]i, j = πiν j +O(e−ξt)

so that, summing over j ∈ Xtr, we get

∀i ∈ Xtr, eϑtPi(T > t) = πi +O(e−ξt) .

From the two previous equations it follows that

∀i, j ∈ Xtr, lim
t→∞
Pi(Yt = j | T > t) = lim

t→∞

Pi(Yt = j)
Pi(T > t)

= ν j

which proves that the Yaglom limit exists and is equal to ν. The last result of the theorem is also

a direct consequence of the second equation. Since X is finite it also comes that

∀α ∈ P (Xtr), lim
t→∞
Pα(Yt = j | T > t) =

∑

i∈Xtr

αi lim
t→∞
Pi(Yt = j | T > t) =

∑

i∈Xtr

αiν j = ν j

implying that the Yaglom limit is the only QLD of Y and by proposition 3.5 it is the only QSD.

Lastly, by the Perron-Frobenius theorem and equation (5.2) it comes that ϑ = ϑ(ν). �

In particular, we notice that a QSD allocates a positive weight to every state in Xtr.

5.2 A stochastic SIS model

We will now consider a basic SIS model with a fixed population. The results of this part are

mostly from [7].
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We denote by S = (St)t∈R+ the process of the number of susceptible people and by I =
(It)t∈R+ the process of the number of infected (and infectious). They both take values in N and

we assume that there exists N ∈ N∗ such that

∀t ∈ R+, St + It = N . (5.4)

Therefore, it is sufficient to study I only to completely describe the mechanism. Both are Feller

processes and if we consider I then it verifies assumption 1: the set {0} is absorbing. Indeed,

since there are no non-human hosts allowed, then when there is no infected left the spread

ceases. The instantaneous transition rates (Cf definition 4.2) are given by

∀i ∈ {1, . . . , N}, q(i, i + 1) = β i
N − i

N
, q(i, i − 1) = γi, q(i, i) = −i

�

γ+ β
N − i

N

�

(5.5)

where β ,γ > 0. Moreover, equation (4.10) still holds: all the other transition rates are zero.

The logic behind those equations is the same as already explained in 1.2.

From theorem 5.2 we know that there is a single QSD ν which is the Yaglom limit and that

the convergence of the conditional distribution toward ν is geometric. The question is then to

describe ν. When N is small, its computation as a left-eigenvector is tractable, but in a larger

population we have to approximate it.

In that case we can still apply theorem (4.17) that we had for birth-and-day processes, which

gives us the equations

∀i ∈ {1, . . . , N}, β(i − 1)
N − i + 1

N
νi−1 − i

�

γ+ β
N − i

N

�

νi + γ(i + 1)νi+1 = −γν1νi

with the convention that ν0 = νN+1 = 0. Approximations given in the literature often start

from those equations and there are sometimes several alternative approximations for the same

model. Crucially, we make use of the basic reproductive ratio R0 = β/γ. Any approximation

is given for a certain interval of R0. When R0 is significantly smaller than 1 it is said to be

subcritical, supercritical when R0� 1, and the interval of values close to 1 is a transition region.

The previous equations written as a function of R0 gives us

∀i ∈ {1, . . . , N}, R0(i − 1)
N − i + 1

N
νi−1 − i

�

1+ R0
N − i

N

�

νi + (i + 1)νi+1 = −ν1νi (5.6)

so that the dependence on the basic reproductive ratio appears clearly.

Thus, in [7] it is found that a geometric distribution is the best fit for a QSD in the subcrit-

ical region, and a beta-binomial distribution in the supercritical region. We do not review the

techniques which are used to obtain those analytical approximations, but in chapter 7 we will

conduct simulations on this model in the transition region.

Furthermore, notice that results regarding processes on finite spaces still hold if we consider

processes on a two-dimension bounded discrete space. This is the case, in particular, of the SEIS

model analysed in [13]. In this model there is a transition phase when people are “exposed”,

that is, after that they get infected but before that they become infectious themselves. If we still

have N constant then there are three random variables and one linear equation, which leaves

us with a two-dimension state space to describe the process.



Chapter 6

Endemic diseases in a dynamic

population

In the case of long infectious periods, the dynamic of the population can become significant in

the model that we use. These are called endemic diseases. Notable examples are measles and

HIV. Depending on the disease and the situation, we might want to consider either the inner

dynamic demography of the population, or migrations.

Naturally, in the literature, the models are not only studied through quasi-stationary distri-

butions. In particular, the analysis of the equivalent deterministic model is generally done as it

also yields some valuable information. In this dissertation though we will focus on the stochastic

part. The deterministic models, which have been introduced in section 1.2 are kept out of the

scope of the dissertation.

6.1 Introduction to dynamic models

As the mechanisms are more complex now, a model too specific is likely to be intractable,

but simple models can give good insights on the evolution of a disease. A notable difficulty,

especially when it comes to computations, is that the description of the process requires a space

with two dimensions. Indeed, the number I of infected and S of susceptibles are not linearly

related anymore.

Of course, results given in section 4 are still applicable since the state space X = N2 is

countable. However, we need to adapt the notation to the form (S, I). For clarity we will denote

∀s1, i1, s2, i2 ∈ N, qs1,i1(s2, i2) := q((s1, i1), (s2, i2))where the first entry of each pair is the number

of susceptible people and the second is the number of infectious ones.

This dimensionality issue can get even worse. For instance, the study of the spread of HIV

in [23] distinguishes between male and female among both susceptible and infectious people,

which amounts to four different categories. As they also consider the case of an open population,

there is no linear relation between them, so that it is a problem in four dimensions.

A major reference in the literature about epidemic models is [4] by Bartlett, written in 1956.

In this paper he studies a kind of SIR model with immigration, known as the Hamer-Soper model.

35
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The transition rates for all i, j ∈ N are given by

qs,i(s− 1, i + 1) = β is, qs,i(s, i − 1) = γi, qs,i(s+ 1, i) = η (6.1)

with −qs,i(s, i) is the sum of those three and other transition rates are equal to zero.

There are several differences with the model given in 5.2. One of the most important is

that after infection people don’t become susceptible again, which we see from the fact that

qs,i(s + 1, i − 1) = 0 but qs,i(s, i − 1) > 0. They either die, or recover and develop a permanent

immunity. In both cases we don’t need to count them in I or S anymore.

On the other hand we have qs,i(s+ 1, i) > 0 provided that η > 0. Therefore, the population

is likely to grow and since the rate is independent from the number of people already in the

population it can be interpreted as immigration. Thus, the three transitions given correspond

respectively to an infection, a removal and the arrival of someone.

We can observe that this model doesn’t take into account people in the susceptible category

who die naturally. That is, the rate qs,i(s−1, i) could be set positive in a more elaborated model.

The absorbing set Xab is given by N× {0}, when there is no infective left, and it is clear from

the transition rates that Qtr is irreducible. However, the absorbing set differs in other models as

we will see in section 6.4.

The approximation of a quasi-limiting distribution in that case has been later studied in sev-

eral papers. Nevertheless, the existence of a QSD has not been formally proved. In spite of this,

we can at least ensure that the process satisfies some of our basic assumptions, which is already

useful information in practical cases, and allow us to look for quasi-stationary distributions. This

is the purpose of the next two sections, which exploit the peculiarities of the processes similar

to the Hamer-Soper model.

6.2 Determining Feller processes

We have seen in chapter 4 that when Y is a Feller process we can draw various results which

then enable us to look for quasi-stationary distributions. In the case of our models onN2, defined

through their transition rates, we need to prove first that the resulting process is Feller.

Recall that, for any operator A represented by a matrix (ax ,y)x ,y∈X we denote,

Af (x) =
∑

y∈X

ax ,y f (y) and f A(x) =
∑

y∈X

ay,x f (y)

for any x ∈ X and function f such that those quantities are well-defined.

The following propositions from [2] gives us a way to verify that a process defined by its

transition rate matrix is Feller. We give the essential arguments of the proofs without going into

much details. Indeed, we need theorems which rely on a deeper analysis of the resolvents but

there is no point in providing this here. As in chapter 2, the λ-resolvent of (Pt) is denoted by

Rλ.

Proposition 6.1. Let (Pt)t be a transition function on X. Then (Pt) is Feller if and only if ∀λ >
0,∀ f ∈ C0(X), Rλ f ∈ C0(X).

The interpretation of this proposition is that, if there is some kind of order on X, e.g. X= N,

then with λ > 0 and y ∈ X fixed we have limx→∞ϕx ,y(λ) = 0 where ϕx ,y is the Laplace

transform of t 7→ p(t, x , y).
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Proof. The first implication is given in general by proposition 2.15. For the second implication,

suppose that Rλ preserves C0(X). Define S as the range of Rλ on C0(X).
First, we show that S is dense in C0(X). Suppose by contraction that it’s not. Then there is a

f ∈ C0(X) which is at distance ε > 0 of S ⊂ L∞. Using a result of functional analysis from [26]
(theorem 3.4) we know that there exists g ∈ L1 such that 〈 f | g〉 = ε and ∀h ∈ S, 〈g | h〉 = 0.

The latter can be written as gRλ. But Rλ is a one-to-one operator on L1 so this would mean that

g = 0, which is impossible.

By the Hille-Yosida Theorem (theorem 4.1 in [2]), there exists a unique continuous contrac-

tion semigroup on C0(X) corresponding to the collection {Rλ,λ > 0}. The uniqueness of the

Laplace transform gives us that this semigroup is equal to (Pt)t and therefore (Pt)t is Feller. �

Theorem 6.2. Let (Pt)t be a transition function with transition rate matrix Q satisfying the forward

equation (4.6). Suppose that Q satisfies the following conditions:

(i) for every y ∈ X, the function Q1{y} : x 7→ q(x , y) is in C0(X),

(ii) for any λ > 0, the equation λ f = f Q, with f ∈ L1 has no solution other than f = 0.

Then, (Pt)t is a Feller transition function.

Proof. Let D be the set of functions in C0(X) with a finite support. It is straightforward to see

that D is dense in C0(X). Moreover, it is clear from condition (i) that f 7→ Q f maps D into

C0(X). Then, let S denote the range of the operator f 7→ (λI −Q) f on D. We will show that S

is also dense in C0(X).
Suppose that it is not the case. With the same arguments as in the proof of proposition 6.1

it comes that there exists g ∈ L1 \ {0} such that g(λI − Q) = 0 where I denotes the identity

operator. But then condition (ii) implies that h= 0, which contradicts 〈 f | g〉= ε.
Let now Rλ be the λ-resolvent of (Pt)t . Then, using the forward equation (4.6) we get

Rλ(λI −Q) =

∫ ∞

0

e−λt Pt(λI −Q)dt =

∫ ∞

0

d
dt

�

e−λt Pt

�

dt = I

which implies that, ∀s ∈ S, Rλs ∈ D. We also know that Rλ is a continous operator since it is

linear and bounded. Therefore, since S is dense in C0(X), Rλ maps C0(X) into C0(X). Then, the

result follows from proposition 6.1. �

Moreover, it turns out that condition (ii) guarantees the uniqueness of the transition function,

which is also known as the "minimal transition function" and satisfies the forward equation (Cf

theorems 2.2.7 and 2.2.8 in [2]).

6.3 Processes with sure killing

With the results of the previous section and of section 4.2 we can assume that our model

describes a process with a regular transition rate matrix Q. Then, it remains to verify that the

assumption 2 of sure killing is satisfied (as assumption 1 is generally obvious from the transition

rates).

The dynamic models that we use for epidemics fall in the category of competition models,

which have a two dimensional state space. Competition models are themselves a subspace of

multidimensional population model which occur in a d-dimensional state space to describe the
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evolution of a population with d compartments, or equivalently of d populations at different

places with immigration between one another.

The theorems used to assess the sure killing condition can be found in [20] and [21] by

Reuter. He considers competition processes, but does not always state and prove very clearly his

results. The more recent book [2] by Anderson gives a more satisfying version of it, in the case

of multidimensional population models which, have we have seen, are a bit broader but very

similar theoretically.

The formal definition of a competition process as found in [20] is the following.

Definition 6.3. Let X = N2 and Q = (qi, j(k, l))i, j,k,l∈N be a transition rate matrix on X. Then

the corresponding Markov process is said to be a competition process if there exist functions

a, b, c, d, e, f on N2 such that, for every (i, j) ∈ N2,

qi, j(i + 1, j) = a(i, j) qi, j(i, j + 1) = b(i, j)
qi, j(i − 1, j) = c(i, j) qi, j(i, j − 1) = d(i, j)

qi, j(i − 1, j + 1) = e(i, j) qi, j(i + 1, j − 1) = f (i, j)

with −qi, j(i, j) equal to the sum of those rates and other transition rates from (i, j) equal to zero.

Remark. Since there are no states with negative coordinates, for any competition process we

have

∀ j ∈ N, c(0, j) = e(0, j) = 0 and ∀i ∈ N, d(i, 0) = f (i, 0) = 0 .

A consequence of this is that, for any x = (i, j) ∈ X we have |A(x)|¶ 6 where A(x) is the set

of states accessible in one jump from x defined by (4.3). In particular, assumption 3 is always

satisfied.

We can then extend the domain of the generator using the formula of proposition 4.4:

∀x ∈ X, L f (x) :=
∑

y∈A(x)

q(x , y) f (y) (6.2)

for any function f : X→ R. Thus, L f is clearly well defined everywhere.

The general theorem that we can use to assess whether there is sure killing of a process is the

following.

Theorem 6.4. Let Y satisfy assumption 1 and suppose its transition rate matrix Q to be regular.

If, for some function ϕ : X→ R+, we have Lϕ+1¶ 0 on Xtr then, Y satisfies assumption 2 of sure

killing and ∀x ∈ Xtr,Ex[T]¶ ϕ(x)<∞.

We omit the proof of this theorem, which is quite long and is given by both Reuter and

Anderson.

As an example, we will now use the previous propositions to the subcase of competition pro-

cesses where Xab = {0}, although the results can also be applied to any Xab given by a triangle,

i.e. the pairs of integer whose sum of coordinates is less than l for some l ∈ N∗.
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We denote ∀n ∈ N,X(n)tr := {(i, j) ∈ Xtr | i + j = n}. Then, we use the following notation,

which is morally similar to birth rate and a death rate as we used earlier: for any n ∈ N∗,

λn :=max
¦

a(i, j) + b(i, j) | (i, j) ∈ X(n)tr

©

and µn :=min
¦

c(i, j) + d(i, j) | (i, j) ∈ X(n)tr

©

.

Moreover, we shall assume that for any n¾ 1 we have λn > 0 and µn > 0.

We can then state under which conditions those processes are regular and absorbed with

probability one. We will skip the proofs as well, which can be found in [2], as those propositions

are essentially consequences of theorems 6.2 and 6.4 respectively.

Proposition 6.5. Let Q be the transition rate matrix of a competition process absorbed at {0}. If,

∞
∑

n=1

�

1
λn
+

µn

λnλn−1
+ . . .+

µn · · ·µ2

λn · · ·λ1

�

= +∞

then Q is Feller.

Proposition 6.6. Let Q be the transition rate matrix of a competition process and suppose that it

is Feller. If
∞
∑

n=1

λn · · ·λ1

µn+1 · · ·µ2
< +∞

then assumption 2 is satisfied and ∀x ∈ Xtr,Ex[T]<∞.

6.4 Model with inner dynamic demography

We will be interested here in a model described in [8] and still similar to the one given by

(6.1), but now the people added to the population come result from birth in the population. Its

transition rates are given by

qs,i(s− 1, i + 1) = β is, qs,i(s, i − 1) = γi, qs,i(s+ 1, i) = ηs (6.3)

where, again, −qi,s(i, s) is equal to the sum of the three transitions given and all other transition

rates are equal to zero. We suppose that β ,γ,η are all positive. Since the birth mechanism

is dependent on s only, it is more logical to assume that people removed from the infected

population are dead and did not recover, to explain that they play no part in the breeding.

The state space is again X= N×N but we have two absorbing sets now: {0}×N and N×{0}.
The difference compared to the model of section 6.1 is that, before, even when everyone was

infected, new susceptible people could arrive through immigration. But in the new model, since

infected people don’t give birth, when everyone is infected the population can only shrink with

the progressive removal of individuals until there is no one is left.

Therefore we set Xab = ({0} ×N)∪ (N× {0}) and Xtr = N∗ ×N∗. It is then straightforward

to verify that Qtr is irreducible. Using the results of sections 6.2 and 6.3, we can show that the

process is Feller and goes almost surely to extinction. However, the authors of [8] identify no

analytical solution to the QSD equation. Therefore, we need to approximate the quasi-stationary

distributions, using numerical methods in particular.



Chapter 7

Numerical approximations

We present some of the most usual computational techniques that we use to work on quasi-

stationary distributions.

There are several kinds of computations that we want to perform. One is to simply simulate

a jump process given its transition rates, which is addressed in 7.1 and is not specific to quasi-

stationary distributions, another is to find or approximate quasi-stationary distributions for those

processes, which is addressed in 7.2.

7.1 Simulating jumps

Let τ > 0. We want to simulate a jump process Y with jump rates denoted by q(x) and

transition rates denoted by q(x , y) for x , y in the state space. To be represented by the computer

we need to restrict the simulation to a certain set of points in time. The most natural way is to

choose a linear scale, that is points kτ with k ∈ {1, . . . , M} for some M ∈ N. This section is

essentially original work.

Let U ([0, 1]) denote the uniform distribution on [0,1]. A well-known property often used

to model such processes is that, if we denote by X a random variable and by FX its cumulative

distribution function, we can take U ∼U ([0, 1]) and simulate X with

X = F−1
X (U) . (7.1)

Applying equation (7.1) to a random variable following E (λ), the exponential distribution

with parameter λ > 0, we get

−
1
λ

ln(U)∼ E (λ) (7.2)

where U ∼U ([0,1]).
This yields a first method to achieve a numerical simulation of a jump process. At every step

k we draw two uniform random numbers. The first is for the time Tk − Tk−1, using equation

(7.2) with parameter q(YTk−1
). The second one is for the change of state, using equation (7.1)

with the distribution given by K(YTk−1
, ·), where K is the kernel defined by equation (4.7).
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This last distribution can be written in terms of transition rates

∀x , y ∈ X, K(x , {y}) =











1{x}(y) if x ∈ Xab

0 if x ∈ Xtr and x = y

q(x , y)/q(x) if x ∈ Xtr and x 6= y

.

Note that this cuts the process at the killing time T . So, what we are really simulating is Y T ,

considering that we are only interested in what happens before the killing time.

Then, knowing what all the jumps are, for any given k ∈ N we can find in which state the

process is at time kτ. The plot of figure 1.1 was obtained by this method and represents a logistic

birth-and-death model with parameters λ = 1.05
4 , µ = 1

4 , c = 1
8000 . We give below the code of

the two functions in R giving respectively the time before the next jump, and the next state. The

call to br(n) returns λn while dr(n) returns µn.

timeNext <- function(n) {
if(n == 0) {

return (1)
}
return(rexp(1, br(n) + dr(n)))

}

nextState <- function(n) {
if(n == 0) {

return (0)
}
if ( runif (1) < 1/(1 + br(n)/dr(n)) ) {

return(n - 1)
} else {

return(n + 1)
}

}

We also used this method to plot simulations of the SIS process with a dynamic population

described in section 6.4. We used the same parameters as in [8]: β = 0.01, γ= 0.5 and η= 0.5

but with a different starting point which is now (100, 10), i.e. 100 susceptible people and 10

infectious ones. Figure 7.1 represents four simulations of this process, where we only show the

number of infectives, but the total size of the population changes as well. The cyclical patterns

that we observe are similar to those of [8].

A second method, that we can use in the finite case, is to use the equation Pτ = eQτ where

(Pt)t is the transition function of Y . At the first step, we can draw Y0 using equation (7.1) if we

know the initial distribution. Then, denoting by δY0
the Dirac distribution in Y0 we can draw

Yτ with equation (7.1) knowing that its distribution is given by δT
Y0

Pτ. We can then iterate the

process: at each step, knowing Ykτ we draw Y(k+1)τ following distribution δT
Ykτ

Pτ.

In case of an infinite state space we could use this with a truncature of Q. This would

presumably return a decent approximation (only extreme cases are rejected) provided that τ is

small and that the size of the troncature is big enough.

Using this second technique we modelled the SIS process described in section 5.2. Figure

7.1 features four simulated sample paths of this process. The parameters used are: N = 400,
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Figure 7.1: Simulations of the SIS process of equation (6.3)

β = 0.55, γ= 0.5 and the disease starts with ten infectives at time 0.

7.2 Finding quasi-stationary distributions

We consider that the matrix Qtr of transition rates between transient states is irreducible,

which holds in the applications presented here. In cases when it is not, we have to consider

several classes of states to exclude those which cannot be accessible from a QSD, which is a

more complex problem. The sources used in this section are [28] and [8].

If the state space is finite equal to {0, . . . , N}, then we can directly compute the eigenvector

of RT
1 , where R1 is the submarkovian restriction of P1 to Xtr. As we have seen, this eigenvector

should have all its entries of the same sign and non-zero since Qtr is supposed irreducible. Then,

we normalize it so that the eigenvector ν ∈ RN satisfies
∑

i νi = 1.

This is the easiest case and we can compute it in R by:

R1 = expm(Qtr)
ev <- eigen(t(R1))
theta = -log(Re(ev$values [1]))
nu <- Re(ev$vectors [,1])
nu <- abs(nu / sum(nu))

where theta is the extinction rate and nu is the QSD.

Figure 7.2 represents the QSD that we get with the SIS model defined in section 5.2, with

the same parameters that we used in the previous section. In particular, we can note that the

path of the one process which survives for a long time in figure 7.1 takes the values in the range

predicted by the QSD.



Chapter 7. Numerical approximations Page 43

Figure 7.2: Simulations of the SIS process of equation (5.5)

Figure 7.3: A QSD for a model of the SIS process defined by (5.5)
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If the state space is infinite and so is Q, we use a truncation procedure, approximating Q by

a sequence (Q(k))k∈N∗ of irreducible finite square matrices. We exploit the corresponding R1

matrices to compute a sequence (ν(k)) of normalized left eigenvectors and we take their limit.

Thus, some previous analytical approximation can guide us in order to find the size at which

we truncate the matrix. Then, the decay parameters (ϑ(ν(k)))k will converge to ϑ(ν) but the

convergence of (ν(k)) is not guaranteed.

Finally, a solution is to look for quasi-limiting distributions by simulating the process many

times, following the first method given in section 7.1. We have seen in section 5.1 that the

convergence is fast in the finite case, and most of the models studied in the literature have a

reasonably fast convergence as well.

The algorithm goes as follows: we generate the process n times with the same starting point.

We get rid of those which are absorbed before the end of the time window. For those which

remain, we may cut a first period of time for each in order to keep only the part where the

conditional distribution should be close to the QLD. Then, for every state x ∈ Xtr, we count how

many times over all the simulations this state is reached. Then, we simply have to normalize in

order to get the quasi-limiting distribution if it exists.

Note that the second method, by calculation or approximation of P1, would be correct as

well. But in that case we are interested in every value that the processes take, and not just in

where they are at some points of time. Therefore, it is better to calculate every jump, all the

more that it requires less computation for the same number of samples.

A clear limitation of that method is that, when we have a multi-dimensional process this

stastistical can require many simulations to give a satisfying result. For instance, with a two-

dimensional epidemic model (S, I), the number of simulations to maintain a precision will grow

as N2 when we look at patches from 1 to N for each component.



Chapter 8

Conclusion

In this dissertation, we summarised results from scattered sources with the objective of provid-

ing an accessible text for non-specialists. We did so through a gradual specialization meant to

provide a theoretical environment consistent from the beginning to the end of this work.

The publications [9], [17] which were our main sources on the general theory of quasi-

stationary distributions can prove difficult for the novice. Therefore, we started by placing

quasi-stationary distributions in the theory of Markov processes whose most useful elements

were introduced in chapter 2. This allowed the dissertation to be self-contained in its most cru-

cial parts. We can also noted that those two sources given here suffer from some flaws that we

corrected here.

Then, we proceeded to the transition to discrete spaces. Again, as a complement to papers

on quasi-stationary distributions, which naturally do not cover the theory of jump processes, we

explain how they can be built from the theory already developed in the previous chapters. A

higher level of exposition is possible on the construction of those processes, but the one given

here is sufficient to understand them in the context of quasi-stationary distributions. In partic-

ular, we made the choice to consider Feller processes all along, and see how they satisfy basic

assumptions. In applied papers, processes are almost never identified as Feller and various reg-

ularity properties are considered instead, which are often similar. On the contrary, we tried to

highlight the fact that the theorems used in our applications are still strongly connected to the

theory of Feller processes and to the more abstract properties of the first chapters.

Thus, starting from basic assumptions we reviewed some interesting results on the existence

of quasi-stationary distributions and the properties of corresponding processes. The process was

then reversed when we considered birth-and-deaths processes and epidemics. We enhanced

the fact that it was necessary to then check that the assumptions of regularity and sure killing

were satisfied. A significant part of chapters 5 and 6 was dedicated to this, although it is a mere

preliminary to the study of quasi-stationary distributions and it could have been more interesting

to favor the core of the subject.

Nevertheless, those verifications are necessary in the context of this dissertation to give a

good sense of what a rigorous study of quasi-stationary distributions is. Moreover, we can note

that there is a lack of considerations for this in the literature. Papers which stay theoretical make

those assumptions directly while oftentimes the more applied ones do not give satisfying proofs
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of it. Yet, there are some clear ways to carry on those proofs, and the book [2] by Anderson in

particular contains many useful theorems and calculation techniques to do so.

Overall, we provided in chapters 5 and 6 a review of results regarding epidemics and theo-

rems which can be used generically to study competition processes which admit quasi-stationary

distributions. Nonetheless, we did not, as was initially considered, bring new results about those

models. This is mostly because the in-depth study of any model does not rely only on our theory

in quasi-stationary distributions. It is generally paired with a larger analysis, including notably

the deterministic model, which would have brought us too far from the subject of this disserta-

tion.

Yet, the results that we gave are certainly of use to proceed to the analysis of a stochastic

model. There are other ways that we could have treated this part, in adapting them to other

sub-cases for example.

Finally, we reviewed different techniques used to simulate processes and approximate quasi-

stationary distributions. We could also have been further in this direction in a longer work, and

compare the efficiency of different methods on a range of competition processes. The perfor-

mance of algorithms are rarely studied in the literature on quasi-stationary distributions. Yet,

we can tell that it matters, as the approximations made by researchers are most of the time at a

small scale, because it is computationally difficult to do bigger. Therefore, an improvement on

that matter would probably allow more accurate simulations of epidemics.
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